audio_model.py 3.88 KB
Newer Older
wangshankun's avatar
wangshankun committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
import os
import torch
import time
import glob
from lightx2v.models.networks.wan.model import WanModel
from lightx2v.models.networks.wan.weights.pre_weights import WanPreWeights
from lightx2v.models.networks.wan.weights.post_weights import WanPostWeights
from lightx2v.models.networks.wan.weights.transformer_weights import (
    WanTransformerWeights,
)
from lightx2v.models.networks.wan.infer.pre_infer import WanPreInfer
from lightx2v.models.networks.wan.infer.post_infer import WanPostInfer

from lightx2v.models.networks.wan.infer.pre_infer import WanPreInfer
15
16
from lightx2v.models.networks.wan.infer.audio.pre_wan_audio_infer import WanAudioPreInfer
from lightx2v.models.networks.wan.infer.audio.post_wan_audio_infer import WanAudioPostInfer
wangshankun's avatar
wangshankun committed
17
18
19
20
21
from lightx2v.models.networks.wan.infer.feature_caching.transformer_infer import WanTransformerInferTeaCaching
from safetensors import safe_open
import lightx2v.attentions.distributed.ulysses.wrap as ulysses_dist_wrap
import lightx2v.attentions.distributed.ring.wrap as ring_dist_wrap

wangshankun's avatar
wangshankun committed
22
23
from lightx2v.attentions.common.radial_attn import MaskMap

wangshankun's avatar
wangshankun committed
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
from lightx2v.models.networks.wan.infer.transformer_infer import (
    WanTransformerInfer,
)
from lightx2v.models.networks.wan.infer.feature_caching.transformer_infer import (
    WanTransformerInferTeaCaching,
)


class WanAudioModel(WanModel):
    pre_weight_class = WanPreWeights
    post_weight_class = WanPostWeights
    transformer_weight_class = WanTransformerWeights

    def __init__(self, model_path, config, device):
        super().__init__(model_path, config, device)

    def _init_infer_class(self):
        self.pre_infer_class = WanAudioPreInfer
        self.post_infer_class = WanAudioPostInfer
        if self.config["feature_caching"] == "NoCaching":
            self.transformer_infer_class = WanTransformerInfer
        elif self.config["feature_caching"] == "Tea":
            self.transformer_infer_class = WanTransformerInferTeaCaching
        else:
            raise NotImplementedError(f"Unsupported feature_caching type: {self.config['feature_caching']}")

    @torch.no_grad()
    def infer(self, inputs):
        if self.config["cpu_offload"]:
            self.pre_weight.to_cuda()
            self.post_weight.to_cuda()

wangshankun's avatar
wangshankun committed
56
57
58
59
60
61
        if self.transformer_infer.mask_map is None:
            _, c, h, w = self.scheduler.latents.shape
            num_frame = c + 1  # for r2v
            video_token_num = num_frame * (h // 2) * (w // 2)
            self.transformer_infer.mask_map = MaskMap(video_token_num, num_frame)

wangshankun's avatar
wangshankun committed
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
        embed, grid_sizes, pre_infer_out, valid_patch_length = self.pre_infer.infer(self.pre_weight, inputs, positive=True)
        x = self.transformer_infer.infer(self.transformer_weights, grid_sizes, embed, *pre_infer_out)
        noise_pred_cond = self.post_infer.infer(self.post_weight, x, embed, grid_sizes, valid_patch_length)[0]

        if self.config["feature_caching"] == "Tea":
            self.scheduler.cnt += 1
            if self.scheduler.cnt >= self.scheduler.num_steps:
                self.scheduler.cnt = 0
        self.scheduler.noise_pred = noise_pred_cond

        if self.config["enable_cfg"]:
            embed, grid_sizes, pre_infer_out, valid_patch_length = self.pre_infer.infer(self.pre_weight, inputs, positive=False)
            x = self.transformer_infer.infer(self.transformer_weights, grid_sizes, embed, *pre_infer_out)
            noise_pred_uncond = self.post_infer.infer(self.post_weight, x, embed, grid_sizes, valid_patch_length)[0]

            if self.config["feature_caching"] == "Tea":
                self.scheduler.cnt += 1
                if self.scheduler.cnt >= self.scheduler.num_steps:
                    self.scheduler.cnt = 0

            self.scheduler.noise_pred = noise_pred_uncond + self.config.sample_guide_scale * (noise_pred_cond - noise_pred_uncond)

            if self.config["cpu_offload"]:
                self.pre_weight.to_cpu()
                self.post_weight.to_cpu()