wan_causal_runner.py 6.26 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import os
import numpy as np
import torch
import torchvision.transforms.functional as TF
from PIL import Image
from lightx2v.utils.registry_factory import RUNNER_REGISTER
from lightx2v.models.runners.wan.wan_runner import WanRunner
from lightx2v.models.runners.default_runner import DefaultRunner
from lightx2v.models.schedulers.wan.scheduler import WanScheduler
from lightx2v.models.schedulers.wan.causal.scheduler import WanCausalScheduler
from lightx2v.utils.profiler import ProfilingContext4Debug, ProfilingContext
from lightx2v.models.input_encoders.hf.t5.model import T5EncoderModel
from lightx2v.models.input_encoders.hf.xlm_roberta.model import CLIPModel
from lightx2v.models.networks.wan.causal_model import WanCausalModel
from lightx2v.models.networks.wan.lora_adapter import WanLoraWrapper
from lightx2v.models.video_encoders.hf.wan.vae import WanVAE
import torch.distributed as dist


@RUNNER_REGISTER("wan2.1_causal")
class WanCausalRunner(WanRunner):
    def __init__(self, config):
        super().__init__(config)
        self.denoising_step_list = self.model.config.denoising_step_list
        self.num_frame_per_block = self.model.config.num_frame_per_block
        self.num_frames = self.model.config.num_frames
        self.frame_seq_length = self.model.config.frame_seq_length
        self.infer_blocks = self.model.config.num_blocks
        self.num_fragments = self.model.config.num_fragments

    @ProfilingContext("Load models")
    def load_model(self):
        if self.config["parallel_attn_type"]:
            cur_rank = dist.get_rank()
            torch.cuda.set_device(cur_rank)
        image_encoder = None
        if self.config.cpu_offload:
            init_device = torch.device("cpu")
        else:
            init_device = torch.device("cuda")

        text_encoder = T5EncoderModel(
            text_len=self.config["text_len"],
            dtype=torch.bfloat16,
            device=init_device,
            checkpoint_path=os.path.join(self.config.model_path, "models_t5_umt5-xxl-enc-bf16.pth"),
            tokenizer_path=os.path.join(self.config.model_path, "google/umt5-xxl"),
            shard_fn=None,
        )
        text_encoders = [text_encoder]
        model = WanCausalModel(self.config.model_path, self.config, init_device)

        if self.config.lora_path:
            lora_wrapper = WanLoraWrapper(model)
            lora_name = lora_wrapper.load_lora(self.config.lora_path)
            lora_wrapper.apply_lora(lora_name, self.config.strength_model)
            print(f"Loaded LoRA: {lora_name}")

        vae_model = WanVAE(vae_pth=os.path.join(self.config.model_path, "Wan2.1_VAE.pth"), device=init_device, parallel=self.config.parallel_vae)
        if self.config.task == "i2v":
            image_encoder = CLIPModel(
                dtype=torch.float16,
                device=init_device,
                checkpoint_path=os.path.join(self.config.model_path, "models_clip_open-clip-xlm-roberta-large-vit-huge-14.pth"),
                tokenizer_path=os.path.join(self.config.model_path, "xlm-roberta-large"),
            )

        return model, text_encoders, vae_model, image_encoder

    def init_scheduler(self):
        scheduler = WanCausalScheduler(self.config)
        self.model.set_scheduler(scheduler)

    def set_target_shape(self):
        if self.config.task == "i2v":
            self.config.target_shape = (16, 3, self.config.lat_h, self.config.lat_w)
        elif self.config.task == "t2v":
            self.config.target_shape = (
                16,
                self.config.num_frame_per_block,
                int(self.config.target_height) // self.config.vae_stride[1],
                int(self.config.target_width) // self.config.vae_stride[2],
            )

    def run(self):
        self.model.transformer_infer._init_kv_cache(dtype=torch.bfloat16, device="cuda")
        self.model.transformer_infer._init_crossattn_cache(dtype=torch.bfloat16, device="cuda")

        output_latents = torch.zeros(
            (self.model.config.target_shape[0], self.num_frames + (self.num_fragments - 1) * (self.num_frames - self.num_frame_per_block), *self.model.config.target_shape[2:]),
            device="cuda",
            dtype=torch.bfloat16,
        )

        start_block_idx = 0

        for fragment_idx in range(self.num_fragments):
            print(f"=======> fragment_idx: {fragment_idx + 1} / {self.num_fragments}")

            kv_start = 0
            kv_end = kv_start + self.num_frame_per_block * self.frame_seq_length

            if fragment_idx > 0:
                print("recompute the kv_cache ...")
                with ProfilingContext4Debug("step_pre"):
                    self.model.scheduler.latents = self.model.scheduler.last_sample
                    self.model.scheduler.step_pre(step_index=self.model.scheduler.infer_steps - 1)

                with ProfilingContext4Debug("infer"):
                    self.model.infer(self.inputs, kv_start, kv_end)

                kv_start += self.num_frame_per_block * self.frame_seq_length
                kv_end += self.num_frame_per_block * self.frame_seq_length

            infer_blocks = self.infer_blocks - (fragment_idx > 0)

            for block_idx in range(infer_blocks):
                print(f"=======> block_idx: {block_idx + 1} / {infer_blocks}")
                print(f"=======> kv_start: {kv_start}, kv_end: {kv_end}")
                self.model.scheduler.reset()

                for step_index in range(self.model.scheduler.infer_steps):
                    print(f"==> step_index: {step_index + 1} / {self.model.scheduler.infer_steps}")

                    with ProfilingContext4Debug("step_pre"):
                        self.model.scheduler.step_pre(step_index=step_index)

                    with ProfilingContext4Debug("infer"):
                        self.model.infer(self.inputs, kv_start, kv_end)

                    with ProfilingContext4Debug("step_post"):
                        self.model.scheduler.step_post()

                kv_start += self.num_frame_per_block * self.frame_seq_length
                kv_end += self.num_frame_per_block * self.frame_seq_length

                output_latents[:, start_block_idx * self.num_frame_per_block : (start_block_idx + 1) * self.num_frame_per_block] = self.model.scheduler.latents
                start_block_idx += 1

        return output_latents, self.model.scheduler.generator