TCDecoder.py 12.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
#!/usr/bin/env python3
"""
Tiny AutoEncoder for Hunyuan Video (Decoder-only, pruned)
- Encoder removed
- Transplant/widening helpers removed
- Deepening (IdentityConv2d+ReLU) is now built into the decoder structure itself
"""

from collections import namedtuple

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.nn.init as init
from einops import rearrange
from tqdm.auto import tqdm

DecoderResult = namedtuple("DecoderResult", ("frame", "memory"))
TWorkItem = namedtuple("TWorkItem", ("input_tensor", "block_index"))

# ----------------------------
# Utility / building blocks
# ----------------------------


class IdentityConv2d(nn.Conv2d):
    """Same-shape Conv2d initialized to identity (Dirac)."""

    def __init__(self, C, kernel_size=3, bias=False):
        pad = kernel_size // 2
        super().__init__(C, C, kernel_size, padding=pad, bias=bias)
        with torch.no_grad():
            init.dirac_(self.weight)
            if self.bias is not None:
                self.bias.zero_()


def conv(n_in, n_out, **kwargs):
    return nn.Conv2d(n_in, n_out, 3, padding=1, **kwargs)


class Clamp(nn.Module):
    def forward(self, x):
        return torch.tanh(x / 3) * 3


class MemBlock(nn.Module):
    def __init__(self, n_in, n_out):
        super().__init__()
        self.conv = nn.Sequential(conv(n_in * 2, n_out), nn.ReLU(inplace=True), conv(n_out, n_out), nn.ReLU(inplace=True), conv(n_out, n_out))
        self.skip = nn.Conv2d(n_in, n_out, 1, bias=False) if n_in != n_out else nn.Identity()
        self.act = nn.ReLU(inplace=True)

    def forward(self, x, past):
        return self.act(self.conv(torch.cat([x, past], 1)) + self.skip(x))


class TPool(nn.Module):
    def __init__(self, n_f, stride):
        super().__init__()
        self.stride = stride
        self.conv = nn.Conv2d(n_f * stride, n_f, 1, bias=False)

    def forward(self, x):
        _NT, C, H, W = x.shape
        return self.conv(x.reshape(-1, self.stride * C, H, W))


class TGrow(nn.Module):
    def __init__(self, n_f, stride):
        super().__init__()
        self.stride = stride
        self.conv = nn.Conv2d(n_f, n_f * stride, 1, bias=False)

    def forward(self, x):
        _NT, C, H, W = x.shape
        x = self.conv(x)
        return x.reshape(-1, C, H, W)


class PixelShuffle3d(nn.Module):
    def __init__(self, ff, hh, ww):
        super().__init__()
        self.ff = ff
        self.hh = hh
        self.ww = ww

    def forward(self, x):
        # x: (B, C, F, H, W)
        B, C, F, H, W = x.shape
        if F % self.ff != 0:
            first_frame = x[:, :, 0:1, :, :].repeat(1, 1, self.ff - F % self.ff, 1, 1)
            x = torch.cat([first_frame, x], dim=2)
        return rearrange(x, "b c (f ff) (h hh) (w ww) -> b (c ff hh ww) f h w", ff=self.ff, hh=self.hh, ww=self.ww).transpose(1, 2)


# ----------------------------
# Generic NTCHW graph executor (kept; used by decoder)
# ----------------------------


def apply_model_with_memblocks(model, x, parallel, show_progress_bar, mem=None):
    """
    Apply a sequential model with memblocks to the given input.
    Args:
    - model: nn.Sequential of blocks to apply
    - x: input data, of dimensions NTCHW
    - parallel: if True, parallelize over timesteps (fast but uses O(T) memory)
        if False, each timestep will be processed sequentially (slow but uses O(1) memory)
    - show_progress_bar: if True, enables tqdm progressbar display

    Returns NTCHW tensor of output data.
    """
    assert x.ndim == 5, f"TAEHV operates on NTCHW tensors, but got {x.ndim}-dim tensor"
    N, T, C, H, W = x.shape
    if parallel:
        x = x.reshape(N * T, C, H, W)
        for b in tqdm(model, disable=not show_progress_bar):
            if isinstance(b, MemBlock):
                NT, C, H, W = x.shape
                T = NT // N
                _x = x.reshape(N, T, C, H, W)
                mem = F.pad(_x, (0, 0, 0, 0, 0, 0, 1, 0), value=0)[:, :T].reshape(x.shape)
                x = b(x, mem)
            else:
                x = b(x)
        NT, C, H, W = x.shape
        T = NT // N
        x = x.view(N, T, C, H, W)
    else:
        out = []
        work_queue = [TWorkItem(xt, 0) for t, xt in enumerate(x.reshape(N, T * C, H, W).chunk(T, dim=1))]
        progress_bar = tqdm(range(T), disable=not show_progress_bar)
        while work_queue:
            xt, i = work_queue.pop(0)
            if i == 0:
                progress_bar.update(1)
            if i == len(model):
                out.append(xt)
            else:
                b = model[i]
                if isinstance(b, MemBlock):
                    if mem[i] is None:
                        xt_new = b(xt, xt * 0)
                        mem[i] = xt
                    else:
                        xt_new = b(xt, mem[i])
                        mem[i].copy_(xt)
                    work_queue.insert(0, TWorkItem(xt_new, i + 1))
                elif isinstance(b, TPool):
                    if mem[i] is None:
                        mem[i] = []
                    mem[i].append(xt)
                    if len(mem[i]) > b.stride:
                        raise ValueError("TPool internal state invalid.")
                    elif len(mem[i]) == b.stride:
                        N_, C_, H_, W_ = xt.shape
                        xt = b(torch.cat(mem[i], 1).view(N_ * b.stride, C_, H_, W_))
                        mem[i] = []
                        work_queue.insert(0, TWorkItem(xt, i + 1))
                elif isinstance(b, TGrow):
                    xt = b(xt)
                    NT, C_, H_, W_ = xt.shape
                    for xt_next in reversed(xt.view(N, b.stride * C_, H_, W_).chunk(b.stride, 1)):
                        work_queue.insert(0, TWorkItem(xt_next, i + 1))
                else:
                    xt = b(xt)
                    work_queue.insert(0, TWorkItem(xt, i + 1))
        progress_bar.close()
        x = torch.stack(out, 1)
    return x, mem


# ----------------------------
# Decoder-only TAEHV
# ----------------------------


class TAEHV(nn.Module):
    image_channels = 3

    def __init__(self, checkpoint_path="taehv.pth", decoder_time_upscale=(True, True), decoder_space_upscale=(True, True, True), channels=[256, 128, 64, 64], latent_channels=16):
        """Initialize TAEHV (decoder-only) with built-in deepening after every ReLU.
        Deepening config: how_many_each=1, k=3 (fixed as requested).
        """
        super().__init__()
        self.latent_channels = latent_channels
        n_f = channels
        self.frames_to_trim = 2 ** sum(decoder_time_upscale) - 1

        # Build the decoder "skeleton"
        base_decoder = nn.Sequential(
            Clamp(),
            conv(self.latent_channels, n_f[0]),
            nn.ReLU(inplace=True),
            MemBlock(n_f[0], n_f[0]),
            MemBlock(n_f[0], n_f[0]),
            MemBlock(n_f[0], n_f[0]),
            nn.Upsample(scale_factor=2 if decoder_space_upscale[0] else 1),
            TGrow(n_f[0], 1),
            conv(n_f[0], n_f[1], bias=False),
            MemBlock(n_f[1], n_f[1]),
            MemBlock(n_f[1], n_f[1]),
            MemBlock(n_f[1], n_f[1]),
            nn.Upsample(scale_factor=2 if decoder_space_upscale[1] else 1),
            TGrow(n_f[1], 2 if decoder_time_upscale[0] else 1),
            conv(n_f[1], n_f[2], bias=False),
            MemBlock(n_f[2], n_f[2]),
            MemBlock(n_f[2], n_f[2]),
            MemBlock(n_f[2], n_f[2]),
            nn.Upsample(scale_factor=2 if decoder_space_upscale[2] else 1),
            TGrow(n_f[2], 2 if decoder_time_upscale[1] else 1),
            conv(n_f[2], n_f[3], bias=False),
            nn.ReLU(inplace=True),
            conv(n_f[3], TAEHV.image_channels),
        )

        # Inline deepening: insert (IdentityConv2d(k=3) + ReLU) after every ReLU
        self.decoder = self._apply_identity_deepen(base_decoder, how_many_each=1, k=3)

        self.pixel_shuffle = PixelShuffle3d(4, 8, 8)

        if checkpoint_path is not None:
            missing_keys = self.load_state_dict(self.patch_tgrow_layers(torch.load(checkpoint_path, map_location="cpu", weights_only=True)), strict=False)
            print("missing_keys", missing_keys)

        # Initialize decoder mem state
        self.mem = [None] * len(self.decoder)

    @staticmethod
    def _apply_identity_deepen(decoder: nn.Sequential, how_many_each=1, k=3) -> nn.Sequential:
        """Return a new Sequential where every nn.ReLU is followed by how_many_each*(IdentityConv2d(k)+ReLU)."""
        new_layers = []
        for b in decoder:
            new_layers.append(b)
            if isinstance(b, nn.ReLU):
                # Deduce channel count from preceding layer
                C = None
                if len(new_layers) >= 2 and isinstance(new_layers[-2], nn.Conv2d):
                    C = new_layers[-2].out_channels
                elif len(new_layers) >= 2 and isinstance(new_layers[-2], MemBlock):
                    C = new_layers[-2].conv[-1].out_channels
                if C is not None:
                    for _ in range(how_many_each):
                        new_layers.append(IdentityConv2d(C, kernel_size=k, bias=False))
                        new_layers.append(nn.ReLU(inplace=True))
        return nn.Sequential(*new_layers)

    def patch_tgrow_layers(self, sd):
        """Patch TGrow layers to use a smaller kernel if needed (decoder-only)."""
        new_sd = self.state_dict()
        for i, layer in enumerate(self.decoder):
            if isinstance(layer, TGrow):
                key = f"decoder.{i}.conv.weight"
                if key in sd and sd[key].shape[0] > new_sd[key].shape[0]:
                    sd[key] = sd[key][-new_sd[key].shape[0] :]
        return sd

    def decode_video(self, x, parallel=True, show_progress_bar=False, cond=None):
        """Decode a sequence of frames from latents.
        x: NTCHW latent tensor; returns NTCHW RGB in ~[0, 1].
        """
        trim_flag = self.mem[-8] is None  # keeps original relative check

        if cond is not None:
            x = torch.cat([self.pixel_shuffle(cond), x], dim=2)

        x, self.mem = apply_model_with_memblocks(self.decoder, x, parallel, show_progress_bar, mem=self.mem)

        if trim_flag:
            return x[:, self.frames_to_trim :]
        return x

    def forward(self, *args, **kwargs):
        raise NotImplementedError("Decoder-only model: call decode_video(...) instead.")

    def clean_mem(self):
        self.mem = [None] * len(self.decoder)


class DotDict(dict):
    __getattr__ = dict.__getitem__
    __setattr__ = dict.__setitem__


class TAEW2_1DiffusersWrapper(nn.Module):
    def __init__(self, pretrained_path=None, channels=[256, 128, 64, 64]):
        super().__init__()
        self.dtype = torch.bfloat16
        self.device = "cuda"
        self.taehv = TAEHV(pretrained_path, channels=channels).to(self.dtype)
        self.temperal_downsample = [True, True, False]  # [sic]
        self.config = DotDict(scaling_factor=1.0, latents_mean=torch.zeros(16), z_dim=16, latents_std=torch.ones(16))

    def decode(self, latents, return_dict=None):
        n, c, t, h, w = latents.shape
        return (self.taehv.decode_video(latents.transpose(1, 2), parallel=False).transpose(1, 2).mul_(2).sub_(1),)

    def stream_decode_with_cond(self, latents, tiled=False, cond=None):
        n, c, t, h, w = latents.shape
        return self.taehv.decode_video(latents.transpose(1, 2), parallel=False, cond=cond).transpose(1, 2).mul_(2).sub_(1)

    def clean_mem(self):
        self.taehv.clean_mem()


# ----------------------------
# Simplified builder (no small, no transplant, no post-hoc deepening)
# ----------------------------


def build_tcdecoder(new_channels=[512, 256, 128, 128], device="cuda", dtype=torch.bfloat16, new_latent_channels=None):
    """
    构建“更宽”的 decoder;深度增强(IdentityConv2d+ReLU)已在 TAEHV 内部完成。
    - 不创建 small / 不做移植
    - base_ckpt_path 参数保留但不使用(接口兼容)

    返回:big (单个模型)
    """
    if new_latent_channels is not None:
        big = TAEHV(checkpoint_path=None, channels=new_channels, latent_channels=new_latent_channels).to(device).to(dtype).train()
    else:
        big = TAEHV(checkpoint_path=None, channels=new_channels).to(device).to(dtype).train()

    big.clean_mem()
    return big