gradio_demo.py 55.3 KB
Newer Older
gushiqiao's avatar
gushiqiao committed
1
2
import argparse
import gc
PengGao's avatar
PengGao committed
3
4
5
6
import glob
import importlib.util
import json
import os
Gu Shiqiao's avatar
Gu Shiqiao committed
7
8
9

os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True"
os.environ["DTYPE"] = "BF16"
PengGao's avatar
PengGao committed
10
import random
gushiqiao's avatar
gushiqiao committed
11
12
from datetime import datetime

PengGao's avatar
PengGao committed
13
import gradio as gr
gushiqiao's avatar
gushiqiao committed
14
import psutil
PengGao's avatar
PengGao committed
15
16
import torch
from loguru import logger
gushiqiao's avatar
gushiqiao committed
17

Gu Shiqiao's avatar
Gu Shiqiao committed
18
19
20
21
22
23
24
25
26
from lightx2v.utils.input_info import set_input_info
from lightx2v.utils.set_config import get_default_config

try:
    from flashinfer.rope import apply_rope_with_cos_sin_cache_inplace
except ImportError:
    apply_rope_with_cos_sin_cache_inplace = None


gushiqiao's avatar
gushiqiao committed
27
28
29
30
31
32
33
34
35
logger.add(
    "inference_logs.log",
    rotation="100 MB",
    encoding="utf-8",
    enqueue=True,
    backtrace=True,
    diagnose=True,
)

gushiqiao's avatar
gushiqiao committed
36
37
38
MAX_NUMPY_SEED = 2**32 - 1


Gu Shiqiao's avatar
Gu Shiqiao committed
39
40
41
42
def scan_model_path_contents(model_path):
    """Scan model_path directory and return available files and subdirectories"""
    if not model_path or not os.path.exists(model_path):
        return {"dirs": [], "files": [], "safetensors_dirs": [], "pth_files": []}
gushiqiao's avatar
gushiqiao committed
43

Gu Shiqiao's avatar
Gu Shiqiao committed
44
45
46
47
    dirs = []
    files = []
    safetensors_dirs = []
    pth_files = []
gushiqiao's avatar
gushiqiao committed
48

Gu Shiqiao's avatar
Gu Shiqiao committed
49
50
51
52
53
54
55
56
57
58
59
60
61
62
    try:
        for item in os.listdir(model_path):
            item_path = os.path.join(model_path, item)
            if os.path.isdir(item_path):
                dirs.append(item)
                # Check if directory contains safetensors files
                if glob.glob(os.path.join(item_path, "*.safetensors")):
                    safetensors_dirs.append(item)
            elif os.path.isfile(item_path):
                files.append(item)
                if item.endswith(".pth"):
                    pth_files.append(item)
    except Exception as e:
        logger.warning(f"Failed to scan directory: {e}")
gushiqiao's avatar
gushiqiao committed
63

Gu Shiqiao's avatar
Gu Shiqiao committed
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
    return {
        "dirs": sorted(dirs),
        "files": sorted(files),
        "safetensors_dirs": sorted(safetensors_dirs),
        "pth_files": sorted(pth_files),
    }


def get_dit_choices(model_path, model_type="wan2.1"):
    """Get Diffusion model options (filtered by model type)"""
    contents = scan_model_path_contents(model_path)
    excluded_keywords = ["vae", "tae", "clip", "t5", "high_noise", "low_noise"]
    fp8_supported = is_fp8_supported_gpu()

    if model_type == "wan2.1":
        # wan2.1: filter files/dirs containing wan2.1 or Wan2.1
        def is_valid(name):
            name_lower = name.lower()
            if "wan2.1" not in name_lower:
                return False
            if not fp8_supported and "fp8" in name_lower:
                return False
            return not any(kw in name_lower for kw in excluded_keywords)
gushiqiao's avatar
gushiqiao committed
87
    else:
Gu Shiqiao's avatar
Gu Shiqiao committed
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
        # wan2.2: filter files/dirs containing wan2.2 or Wan2.2
        def is_valid(name):
            name_lower = name.lower()
            if "wan2.2" not in name_lower:
                return False
            if not fp8_supported and "fp8" in name_lower:
                return False
            return not any(kw in name_lower for kw in excluded_keywords)

    # Filter matching directories and files
    dir_choices = [d for d in contents["dirs"] if is_valid(d)]
    file_choices = [f for f in contents["files"] if is_valid(f)]
    choices = dir_choices + file_choices
    return choices if choices else [""]


def get_high_noise_choices(model_path):
    """Get high noise model options (files/dirs containing high_noise)"""
    contents = scan_model_path_contents(model_path)
    fp8_supported = is_fp8_supported_gpu()

    def is_valid(name):
        name_lower = name.lower()
        if not fp8_supported and "fp8" in name_lower:
            return False
        return "high_noise" in name_lower or "high-noise" in name_lower

    dir_choices = [d for d in contents["dirs"] if is_valid(d)]
    file_choices = [f for f in contents["files"] if is_valid(f)]
    choices = dir_choices + file_choices
    return choices if choices else [""]


def get_low_noise_choices(model_path):
    """Get low noise model options (files/dirs containing low_noise)"""
    contents = scan_model_path_contents(model_path)
    fp8_supported = is_fp8_supported_gpu()

    def is_valid(name):
        name_lower = name.lower()
        if not fp8_supported and "fp8" in name_lower:
            return False
        return "low_noise" in name_lower or "low-noise" in name_lower

    dir_choices = [d for d in contents["dirs"] if is_valid(d)]
    file_choices = [f for f in contents["files"] if is_valid(f)]
    choices = dir_choices + file_choices
    return choices if choices else [""]


def get_t5_choices(model_path):
    """Get T5 model options (.pth or .safetensors files containing t5 keyword)"""
    contents = scan_model_path_contents(model_path)
    fp8_supported = is_fp8_supported_gpu()

    # Filter from .pth files
    pth_choices = [f for f in contents["pth_files"] if "t5" in f.lower() and (fp8_supported or "fp8" not in f.lower())]

    # Filter from .safetensors files
    safetensors_choices = [f for f in contents["files"] if f.endswith(".safetensors") and "t5" in f.lower() and (fp8_supported or "fp8" not in f.lower())]

    # Filter from directories containing safetensors
    safetensors_dir_choices = [d for d in contents["safetensors_dirs"] if "t5" in d.lower() and (fp8_supported or "fp8" not in d.lower())]

    choices = pth_choices + safetensors_choices + safetensors_dir_choices
    return choices if choices else [""]


def get_clip_choices(model_path):
    """Get CLIP model options (.pth or .safetensors files containing clip keyword)"""
    contents = scan_model_path_contents(model_path)
    fp8_supported = is_fp8_supported_gpu()

    # Filter from .pth files
    pth_choices = [f for f in contents["pth_files"] if "clip" in f.lower() and (fp8_supported or "fp8" not in f.lower())]

    # Filter from .safetensors files
    safetensors_choices = [f for f in contents["files"] if f.endswith(".safetensors") and "clip" in f.lower() and (fp8_supported or "fp8" not in f.lower())]

    # Filter from directories containing safetensors
    safetensors_dir_choices = [d for d in contents["safetensors_dirs"] if "clip" in d.lower() and (fp8_supported or "fp8" not in d.lower())]

    choices = pth_choices + safetensors_choices + safetensors_dir_choices
    return choices if choices else [""]


def get_vae_choices(model_path):
    """Get VAE model options (.pth or .safetensors files containing vae/VAE/tae keyword)"""
    contents = scan_model_path_contents(model_path)
    fp8_supported = is_fp8_supported_gpu()

    # Filter from .pth files
    pth_choices = [f for f in contents["pth_files"] if any(kw in f.lower() for kw in ["vae", "tae"]) and (fp8_supported or "fp8" not in f.lower())]

    # Filter from .safetensors files
    safetensors_choices = [f for f in contents["files"] if f.endswith(".safetensors") and any(kw in f.lower() for kw in ["vae", "tae"]) and (fp8_supported or "fp8" not in f.lower())]

    # Filter from directories containing safetensors
    safetensors_dir_choices = [d for d in contents["safetensors_dirs"] if any(kw in d.lower() for kw in ["vae", "tae"]) and (fp8_supported or "fp8" not in d.lower())]

    choices = pth_choices + safetensors_choices + safetensors_dir_choices
    return choices if choices else [""]


def detect_quant_scheme(model_name):
    """Automatically detect quantization scheme from model name
    - If model name contains "int8" → "int8"
    - If model name contains "fp8" and device supports → "fp8"
    - Otherwise return None (no quantization)
    """
    if not model_name:
        return None
    name_lower = model_name.lower()
    if "int8" in name_lower:
        return "int8"
    elif "fp8" in name_lower:
        if is_fp8_supported_gpu():
            return "fp8"
        else:
            # Device doesn't support fp8, return None (use default precision)
            return None
    return None


def update_model_path_options(model_path, model_type="wan2.1"):
    """Update all model path selectors when model_path or model_type changes"""
    dit_choices = get_dit_choices(model_path, model_type)
    high_noise_choices = get_high_noise_choices(model_path)
    low_noise_choices = get_low_noise_choices(model_path)
    t5_choices = get_t5_choices(model_path)
    clip_choices = get_clip_choices(model_path)
    vae_choices = get_vae_choices(model_path)

    return (
        gr.update(choices=dit_choices, value=dit_choices[0] if dit_choices else ""),
        gr.update(choices=high_noise_choices, value=high_noise_choices[0] if high_noise_choices else ""),
        gr.update(choices=low_noise_choices, value=low_noise_choices[0] if low_noise_choices else ""),
        gr.update(choices=t5_choices, value=t5_choices[0] if t5_choices else ""),
        gr.update(choices=clip_choices, value=clip_choices[0] if clip_choices else ""),
        gr.update(choices=vae_choices, value=vae_choices[0] if vae_choices else ""),
    )
gushiqiao's avatar
gushiqiao committed
229
230


gushiqiao's avatar
gushiqiao committed
231
232
233
def generate_random_seed():
    return random.randint(0, MAX_NUMPY_SEED)

gushiqiao's avatar
gushiqiao committed
234

gushiqiao's avatar
gushiqiao committed
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
def is_module_installed(module_name):
    try:
        spec = importlib.util.find_spec(module_name)
        return spec is not None
    except ModuleNotFoundError:
        return False


def get_available_quant_ops():
    available_ops = []

    vllm_installed = is_module_installed("vllm")
    if vllm_installed:
        available_ops.append(("vllm", True))
    else:
        available_ops.append(("vllm", False))

    sgl_installed = is_module_installed("sgl_kernel")
    if sgl_installed:
        available_ops.append(("sgl", True))
    else:
        available_ops.append(("sgl", False))

    q8f_installed = is_module_installed("q8_kernels")
    if q8f_installed:
        available_ops.append(("q8f", True))
    else:
        available_ops.append(("q8f", False))

    return available_ops


def get_available_attn_ops():
    available_ops = []

    vllm_installed = is_module_installed("flash_attn")
    if vllm_installed:
        available_ops.append(("flash_attn2", True))
    else:
        available_ops.append(("flash_attn2", False))

    sgl_installed = is_module_installed("flash_attn_interface")
    if sgl_installed:
        available_ops.append(("flash_attn3", True))
    else:
        available_ops.append(("flash_attn3", False))

Gu Shiqiao's avatar
Gu Shiqiao committed
282
283
    sage_installed = is_module_installed("sageattention")
    if sage_installed:
gushiqiao's avatar
gushiqiao committed
284
285
286
287
        available_ops.append(("sage_attn2", True))
    else:
        available_ops.append(("sage_attn2", False))

Gu Shiqiao's avatar
Gu Shiqiao committed
288
289
290
291
292
293
    sage3_installed = is_module_installed("sageattn3")
    if sage3_installed:
        available_ops.append(("sage_attn3", True))
    else:
        available_ops.append(("sage_attn3", False))

gushiqiao's avatar
gushiqiao committed
294
295
296
297
298
299
    torch_installed = is_module_installed("torch")
    if torch_installed:
        available_ops.append(("torch_sdpa", True))
    else:
        available_ops.append(("torch_sdpa", False))

gushiqiao's avatar
gushiqiao committed
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
    return available_ops


def get_gpu_memory(gpu_idx=0):
    if not torch.cuda.is_available():
        return 0
    try:
        with torch.cuda.device(gpu_idx):
            memory_info = torch.cuda.mem_get_info()
            total_memory = memory_info[1] / (1024**3)  # Convert bytes to GB
            return total_memory
    except Exception as e:
        logger.warning(f"Failed to get GPU memory: {e}")
        return 0


def get_cpu_memory():
    available_bytes = psutil.virtual_memory().available
    return available_bytes / 1024**3
gushiqiao's avatar
gushiqiao committed
319
320


gushiqiao's avatar
gushiqiao committed
321
322
323
324
325
326
327
328
def cleanup_memory():
    gc.collect()

    if torch.cuda.is_available():
        torch.cuda.empty_cache()
        torch.cuda.synchronize()

    try:
Gu Shiqiao's avatar
Gu Shiqiao committed
329
330
        import psutil

gushiqiao's avatar
gushiqiao committed
331
332
333
334
335
336
337
338
339
340
        if hasattr(psutil, "virtual_memory"):
            if os.name == "posix":
                try:
                    os.system("sync")
                except:  # noqa
                    pass
    except:  # noqa
        pass


gushiqiao's avatar
gushiqiao committed
341
342
def generate_unique_filename(output_dir):
    os.makedirs(output_dir, exist_ok=True)
gushiqiao's avatar
gushiqiao committed
343
    timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
Gu Shiqiao's avatar
Gu Shiqiao committed
344
    return os.path.join(output_dir, f"{timestamp}.mp4")
gushiqiao's avatar
gushiqiao committed
345
346


gushiqiao's avatar
gushiqiao committed
347
348
349
350
351
352
353
354
def is_fp8_supported_gpu():
    if not torch.cuda.is_available():
        return False
    compute_capability = torch.cuda.get_device_capability(0)
    major, minor = compute_capability
    return (major == 8 and minor == 9) or (major >= 9)


gushiqiao's avatar
gushiqiao committed
355
356
357
358
359
360
361
362
363
364
365
366
def is_ada_architecture_gpu():
    if not torch.cuda.is_available():
        return False
    try:
        gpu_name = torch.cuda.get_device_name(0).upper()
        ada_keywords = ["RTX 40", "RTX40", "4090", "4080", "4070", "4060"]
        return any(keyword in gpu_name for keyword in ada_keywords)
    except Exception as e:
        logger.warning(f"Failed to get GPU name: {e}")
        return False


gushiqiao's avatar
gushiqiao committed
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
def get_quantization_options(model_path):
    """Get quantization options dynamically based on model_path"""
    import os

    # Check subdirectories
    subdirs = ["original", "fp8", "int8"]
    has_subdirs = {subdir: os.path.exists(os.path.join(model_path, subdir)) for subdir in subdirs}

    # Check original files in root directory
    t5_bf16_exists = os.path.exists(os.path.join(model_path, "models_t5_umt5-xxl-enc-bf16.pth"))
    clip_fp16_exists = os.path.exists(os.path.join(model_path, "models_clip_open-clip-xlm-roberta-large-vit-huge-14.pth"))

    # Generate options
    def get_choices(has_subdirs, original_type, fp8_type, int8_type, fallback_type, has_original_file=False):
        choices = []
        if has_subdirs["original"]:
            choices.append(original_type)
        if has_subdirs["fp8"]:
            choices.append(fp8_type)
        if has_subdirs["int8"]:
            choices.append(int8_type)

        # If no subdirectories but original file exists, add original type
gushiqiao's avatar
gushiqiao committed
390
391
392
        if has_original_file:
            if not choices or "original" not in choices:
                choices.append(original_type)
gushiqiao's avatar
gushiqiao committed
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411

        # If no options at all, use default value
        if not choices:
            choices = [fallback_type]

        return choices, choices[0]

    # DIT options
    dit_choices, dit_default = get_choices(has_subdirs, "bf16", "fp8", "int8", "bf16")

    # T5 options - check if original file exists
    t5_choices, t5_default = get_choices(has_subdirs, "bf16", "fp8", "int8", "bf16", t5_bf16_exists)

    # CLIP options - check if original file exists
    clip_choices, clip_default = get_choices(has_subdirs, "fp16", "fp8", "int8", "fp16", clip_fp16_exists)

    return {"dit_choices": dit_choices, "dit_default": dit_default, "t5_choices": t5_choices, "t5_default": t5_default, "clip_choices": clip_choices, "clip_default": clip_default}


Gu Shiqiao's avatar
Gu Shiqiao committed
412
413
414
415
416
417
418
419
420
421
422
423
424
425
def determine_model_cls(model_type, dit_name, high_noise_name):
    """Determine model_cls based on model type and file name"""
    # Determine file name to check
    if model_type == "wan2.1":
        check_name = dit_name.lower() if dit_name else ""
        is_distill = "4step" in check_name
        return "wan2.1_distill" if is_distill else "wan2.1"
    else:
        # wan2.2
        check_name = high_noise_name.lower() if high_noise_name else ""
        is_distill = "4step" in check_name
        return "wan2.2_moe_distill" if is_distill else "wan2.2_moe"


gushiqiao's avatar
gushiqiao committed
426
427
global_runner = None
current_config = None
Gu Shiqiao's avatar
Gu Shiqiao committed
428
429
430
cur_dit_path = None
cur_t5_path = None
cur_clip_path = None
gushiqiao's avatar
gushiqiao committed
431
432
433
434
435
436
437
438
439

available_quant_ops = get_available_quant_ops()
quant_op_choices = []
for op_name, is_installed in available_quant_ops:
    status_text = "✅ Installed" if is_installed else "❌ Not Installed"
    display_text = f"{op_name} ({status_text})"
    quant_op_choices.append((op_name, display_text))

available_attn_ops = get_available_attn_ops()
Gu Shiqiao's avatar
Gu Shiqiao committed
440
441
442
# Priority order
attn_priority = ["sage_attn3", "sage_attn2", "flash_attn3", "flash_attn2", "torch_sdpa"]
# Sort by priority, installed ones first, uninstalled ones last
gushiqiao's avatar
gushiqiao committed
443
attn_op_choices = []
Gu Shiqiao's avatar
Gu Shiqiao committed
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
attn_op_dict = dict(available_attn_ops)

# Add installed ones first (by priority)
for op_name in attn_priority:
    if op_name in attn_op_dict and attn_op_dict[op_name]:
        status_text = "✅ Installed"
        display_text = f"{op_name} ({status_text})"
        attn_op_choices.append((op_name, display_text))

# Add uninstalled ones (by priority)
for op_name in attn_priority:
    if op_name in attn_op_dict and not attn_op_dict[op_name]:
        status_text = "❌ Not Installed"
        display_text = f"{op_name} ({status_text})"
        attn_op_choices.append((op_name, display_text))

# Add other operators not in priority list (installed ones first)
other_ops = [(op_name, is_installed) for op_name, is_installed in available_attn_ops if op_name not in attn_priority]
for op_name, is_installed in sorted(other_ops, key=lambda x: not x[1]):  # Installed ones first
gushiqiao's avatar
gushiqiao committed
463
464
465
466
467
    status_text = "✅ Installed" if is_installed else "❌ Not Installed"
    display_text = f"{op_name} ({status_text})"
    attn_op_choices.append((op_name, display_text))


gushiqiao's avatar
gushiqiao committed
468
469
470
def run_inference(
    prompt,
    negative_prompt,
471
    save_result_path,
gushiqiao's avatar
gushiqiao committed
472
473
474
475
476
477
478
479
480
481
482
483
    infer_steps,
    num_frames,
    resolution,
    seed,
    sample_shift,
    enable_cfg,
    cfg_scale,
    fps,
    use_tiling_vae,
    lazy_load,
    cpu_offload,
    offload_granularity,
gushiqiao's avatar
gushiqiao committed
484
    t5_cpu_offload,
Gu Shiqiao's avatar
Gu Shiqiao committed
485
486
    clip_cpu_offload,
    vae_cpu_offload,
gushiqiao's avatar
gushiqiao committed
487
    unload_modules,
gushiqiao's avatar
gushiqiao committed
488
489
    attention_type,
    quant_op,
Gu Shiqiao's avatar
Gu Shiqiao committed
490
491
    rope_chunk,
    rope_chunk_size,
gushiqiao's avatar
gushiqiao committed
492
    clean_cuda_cache,
Gu Shiqiao's avatar
Gu Shiqiao committed
493
494
495
496
497
498
499
500
501
    model_path_input,
    model_type_input,
    task_type_input,
    dit_path_input,
    high_noise_path_input,
    low_noise_path_input,
    t5_path_input,
    clip_path_input,
    vae_path_input,
gushiqiao's avatar
gushiqiao committed
502
    image_path=None,
gushiqiao's avatar
gushiqiao committed
503
):
gushiqiao's avatar
gushiqiao committed
504
505
    cleanup_memory()

gushiqiao's avatar
gushiqiao committed
506
507
508
    quant_op = quant_op.split("(")[0].strip()
    attention_type = attention_type.split("(")[0].strip()

Gu Shiqiao's avatar
Gu Shiqiao committed
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
    global global_runner, current_config, model_path, model_cls
    global cur_dit_path, cur_t5_path, cur_clip_path

    task = task_type_input
    model_cls = determine_model_cls(model_type_input, dit_path_input, high_noise_path_input)
    logger.info(f"Auto-determined model_cls: {model_cls} (Model type: {model_type_input})")

    if model_type_input == "wan2.1":
        dit_quant_detected = detect_quant_scheme(dit_path_input)
    else:
        dit_quant_detected = detect_quant_scheme(high_noise_path_input)
    t5_quant_detected = detect_quant_scheme(t5_path_input)
    clip_quant_detected = detect_quant_scheme(clip_path_input)
    logger.info(f"Auto-detected quantization scheme - DIT: {dit_quant_detected}, T5: {t5_quant_detected}, CLIP: {clip_quant_detected}")

    if model_path_input and model_path_input.strip():
        model_path = model_path_input.strip()
gushiqiao's avatar
gushiqiao committed
526
527
528
529

    if os.path.exists(os.path.join(model_path, "config.json")):
        with open(os.path.join(model_path, "config.json"), "r") as f:
            model_config = json.load(f)
gushiqiao's avatar
gushiqiao committed
530
531
    else:
        model_config = {}
gushiqiao's avatar
gushiqiao committed
532

Gu Shiqiao's avatar
Gu Shiqiao committed
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
    save_result_path = generate_unique_filename(output_dir)

    is_dit_quant = dit_quant_detected != "bf16"
    is_t5_quant = t5_quant_detected != "bf16"
    is_clip_quant = clip_quant_detected != "fp16"

    dit_quantized_ckpt = None
    dit_original_ckpt = None
    high_noise_quantized_ckpt = None
    low_noise_quantized_ckpt = None
    high_noise_original_ckpt = None
    low_noise_original_ckpt = None

    if is_dit_quant:
        dit_quant_scheme = f"{dit_quant_detected}-{quant_op}"
        if "wan2.1" in model_cls:
            dit_quantized_ckpt = os.path.join(model_path, dit_path_input)
gushiqiao's avatar
gushiqiao committed
550
        else:
Gu Shiqiao's avatar
Gu Shiqiao committed
551
552
553
554
555
556
            high_noise_quantized_ckpt = os.path.join(model_path, high_noise_path_input)
            low_noise_quantized_ckpt = os.path.join(model_path, low_noise_path_input)
    else:
        dit_quantized_ckpt = "Default"
        if "wan2.1" in model_cls:
            dit_original_ckpt = os.path.join(model_path, dit_path_input)
gushiqiao's avatar
gushiqiao committed
557
        else:
Gu Shiqiao's avatar
Gu Shiqiao committed
558
559
            high_noise_original_ckpt = os.path.join(model_path, high_noise_path_input)
            low_noise_original_ckpt = os.path.join(model_path, low_noise_path_input)
gushiqiao's avatar
gushiqiao committed
560

Gu Shiqiao's avatar
Gu Shiqiao committed
561
    # Use frontend-selected T5 path
gushiqiao's avatar
gushiqiao committed
562
    if is_t5_quant:
Gu Shiqiao's avatar
Gu Shiqiao committed
563
564
        t5_quantized_ckpt = os.path.join(model_path, t5_path_input)
        t5_quant_scheme = f"{t5_quant_detected}-{quant_op}"
gushiqiao's avatar
gushiqiao committed
565
        t5_original_ckpt = None
gushiqiao's avatar
gushiqiao committed
566
    else:
Gu Shiqiao's avatar
Gu Shiqiao committed
567
568
569
        t5_quantized_ckpt = None
        t5_quant_scheme = None
        t5_original_ckpt = os.path.join(model_path, t5_path_input)
gushiqiao's avatar
gushiqiao committed
570

Gu Shiqiao's avatar
Gu Shiqiao committed
571
    # Use frontend-selected CLIP path
gushiqiao's avatar
gushiqiao committed
572
    if is_clip_quant:
Gu Shiqiao's avatar
Gu Shiqiao committed
573
574
        clip_quantized_ckpt = os.path.join(model_path, clip_path_input)
        clip_quant_scheme = f"{clip_quant_detected}-{quant_op}"
gushiqiao's avatar
gushiqiao committed
575
        clip_original_ckpt = None
gushiqiao's avatar
gushiqiao committed
576
    else:
Gu Shiqiao's avatar
Gu Shiqiao committed
577
578
579
580
581
582
583
584
585
586
587
        clip_quantized_ckpt = None
        clip_quant_scheme = None
        clip_original_ckpt = os.path.join(model_path, clip_path_input)

    if model_type_input == "wan2.1":
        current_dit_path = dit_path_input
    else:
        current_dit_path = f"{high_noise_path_input}|{low_noise_path_input}" if high_noise_path_input and low_noise_path_input else None

    current_t5_path = t5_path_input
    current_clip_path = clip_path_input
gushiqiao's avatar
gushiqiao committed
588

gushiqiao's avatar
gushiqiao committed
589
590
    needs_reinit = (
        lazy_load
gushiqiao's avatar
gushiqiao committed
591
        or unload_modules
gushiqiao's avatar
gushiqiao committed
592
593
        or global_runner is None
        or current_config is None
Gu Shiqiao's avatar
Gu Shiqiao committed
594
595
596
597
598
599
        or cur_dit_path is None
        or cur_dit_path != current_dit_path
        or cur_t5_path is None
        or cur_t5_path != current_t5_path
        or cur_clip_path is None
        or cur_clip_path != current_clip_path
gushiqiao's avatar
gushiqiao committed
600
    )
gushiqiao's avatar
gushiqiao committed
601

Gu Shiqiao's avatar
Gu Shiqiao committed
602
603
    if cfg_scale == 1:
        enable_cfg = False
gushiqiao's avatar
gushiqiao committed
604
    else:
Gu Shiqiao's avatar
Gu Shiqiao committed
605
        enable_cfg = True
gushiqiao's avatar
gushiqiao committed
606

Gu Shiqiao's avatar
Gu Shiqiao committed
607
608
609
610
611
612
    vae_name_lower = vae_path_input.lower() if vae_path_input else ""
    use_tae = "tae" in vae_name_lower or "lighttae" in vae_name_lower
    use_lightvae = "lightvae" in vae_name_lower
    need_scaled = "lighttae" in vae_name_lower

    logger.info(f"VAE configuration - use_tae: {use_tae}, use_lightvae: {use_lightvae}, need_scaled: {need_scaled} (VAE: {vae_path_input})")
gushiqiao's avatar
gushiqiao committed
613

Gu Shiqiao's avatar
Gu Shiqiao committed
614
    config_graio = {
gushiqiao's avatar
gushiqiao committed
615
616
617
618
        "infer_steps": infer_steps,
        "target_video_length": num_frames,
        "target_width": int(resolution.split("x")[0]),
        "target_height": int(resolution.split("x")[1]),
gushiqiao's avatar
gushiqiao committed
619
620
621
        "self_attn_1_type": attention_type,
        "cross_attn_1_type": attention_type,
        "cross_attn_2_type": attention_type,
gushiqiao's avatar
gushiqiao committed
622
623
624
625
        "enable_cfg": enable_cfg,
        "sample_guide_scale": cfg_scale,
        "sample_shift": sample_shift,
        "fps": fps,
Gu Shiqiao's avatar
Gu Shiqiao committed
626
        "feature_caching": "NoCaching",
gushiqiao's avatar
gushiqiao committed
627
628
629
630
631
632
633
634
635
636
        "do_mm_calib": False,
        "parallel_attn_type": None,
        "parallel_vae": False,
        "max_area": False,
        "vae_stride": (4, 8, 8),
        "patch_size": (1, 2, 2),
        "lora_path": None,
        "strength_model": 1.0,
        "use_prompt_enhancer": False,
        "text_len": 512,
gushiqiao's avatar
gushiqiao committed
637
        "denoising_step_list": [1000, 750, 500, 250],
Gu Shiqiao's avatar
Gu Shiqiao committed
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
        "cpu_offload": True if "wan2.2" in model_cls else cpu_offload,
        "offload_granularity": "phase" if "wan2.2" in model_cls else offload_granularity,
        "t5_cpu_offload": t5_cpu_offload,
        "clip_cpu_offload": clip_cpu_offload,
        "vae_cpu_offload": vae_cpu_offload,
        "dit_quantized": is_dit_quant,
        "dit_quant_scheme": dit_quant_scheme,
        "dit_quantized_ckpt": dit_quantized_ckpt,
        "dit_original_ckpt": dit_original_ckpt,
        "high_noise_quantized_ckpt": high_noise_quantized_ckpt,
        "low_noise_quantized_ckpt": low_noise_quantized_ckpt,
        "high_noise_original_ckpt": high_noise_original_ckpt,
        "low_noise_original_ckpt": low_noise_original_ckpt,
        "t5_original_ckpt": t5_original_ckpt,
        "t5_quantized": is_t5_quant,
        "t5_quantized_ckpt": t5_quantized_ckpt,
        "t5_quant_scheme": t5_quant_scheme,
        "clip_original_ckpt": clip_original_ckpt,
        "clip_quantized": is_clip_quant,
        "clip_quantized_ckpt": clip_quantized_ckpt,
        "clip_quant_scheme": clip_quant_scheme,
        "vae_path": os.path.join(model_path, vae_path_input),
        "use_tiling_vae": use_tiling_vae,
        "use_tae": use_tae,
        "use_lightvae": use_lightvae,
        "need_scaled": need_scaled,
        "lazy_load": lazy_load,
        "rope_chunk": rope_chunk,
        "rope_chunk_size": rope_chunk_size,
        "clean_cuda_cache": clean_cuda_cache,
        "unload_modules": unload_modules,
        "seq_parallel": False,
        "warm_up_cpu_buffers": False,
        "boundary_step_index": 2,
        "boundary": 0.900,
        "use_image_encoder": False if "wan2.2" in model_cls else True,
        "rope_type": "flashinfer" if apply_rope_with_cos_sin_cache_inplace else "torch",
gushiqiao's avatar
gushiqiao committed
675
676
677
678
    }

    args = argparse.Namespace(
        model_cls=model_cls,
Gu Shiqiao's avatar
Gu Shiqiao committed
679
        seed=seed,
gushiqiao's avatar
gushiqiao committed
680
681
682
683
684
685
        task=task,
        model_path=model_path,
        prompt_enhancer=None,
        prompt=prompt,
        negative_prompt=negative_prompt,
        image_path=image_path,
686
        save_result_path=save_result_path,
Gu Shiqiao's avatar
Gu Shiqiao committed
687
        return_result_tensor=False,
gushiqiao's avatar
gushiqiao committed
688
689
    )

Gu Shiqiao's avatar
Gu Shiqiao committed
690
    config = get_default_config()
gushiqiao's avatar
gushiqiao committed
691
692
    config.update({k: v for k, v in vars(args).items()})
    config.update(model_config)
Gu Shiqiao's avatar
Gu Shiqiao committed
693
    config.update(config_graio)
gushiqiao's avatar
gushiqiao committed
694
695
696
697

    logger.info(f"Using model: {model_path}")
    logger.info(f"Inference configuration:\n{json.dumps(config, indent=4, ensure_ascii=False)}")

gushiqiao's avatar
gushiqiao committed
698
    # Initialize or reuse the runner
gushiqiao's avatar
gushiqiao committed
699
700
701
702
703
704
705
    runner = global_runner
    if needs_reinit:
        if runner is not None:
            del runner
            torch.cuda.empty_cache()
            gc.collect()

gushiqiao's avatar
gushiqiao committed
706
707
        from lightx2v.infer import init_runner  # noqa

gushiqiao's avatar
gushiqiao committed
708
        runner = init_runner(config)
Gu Shiqiao's avatar
Gu Shiqiao committed
709
710
        input_info = set_input_info(args)

gushiqiao's avatar
gushiqiao committed
711
        current_config = config
Gu Shiqiao's avatar
Gu Shiqiao committed
712
713
714
        cur_dit_path = current_dit_path
        cur_t5_path = current_t5_path
        cur_clip_path = current_clip_path
gushiqiao's avatar
gushiqiao committed
715
716
717

        if not lazy_load:
            global_runner = runner
gushiqiao's avatar
gushiqiao committed
718
719
    else:
        runner.config = config
gushiqiao's avatar
gushiqiao committed
720

Gu Shiqiao's avatar
Gu Shiqiao committed
721
    runner.run_pipeline(input_info)
gushiqiao's avatar
gushiqiao committed
722
    cleanup_memory()
gushiqiao's avatar
gushiqiao committed
723

724
    return save_result_path
gushiqiao's avatar
gushiqiao committed
725
726


gushiqiao's avatar
gushiqiao committed
727
728
729
730
731
def handle_lazy_load_change(lazy_load_enabled):
    """Handle lazy_load checkbox change to automatically enable unload_modules"""
    return gr.update(value=lazy_load_enabled)


Gu Shiqiao's avatar
Gu Shiqiao committed
732
733
def auto_configure(resolution):
    """Auto-configure inference options based on machine configuration and resolution"""
gushiqiao's avatar
gushiqiao committed
734
735
    default_config = {
        "lazy_load_val": False,
Gu Shiqiao's avatar
Gu Shiqiao committed
736
737
        "rope_chunk_val": False,
        "rope_chunk_size_val": 100,
gushiqiao's avatar
gushiqiao committed
738
739
740
        "clean_cuda_cache_val": False,
        "cpu_offload_val": False,
        "offload_granularity_val": "block",
gushiqiao's avatar
gushiqiao committed
741
        "t5_cpu_offload_val": False,
Gu Shiqiao's avatar
Gu Shiqiao committed
742
743
        "clip_cpu_offload_val": False,
        "vae_cpu_offload_val": False,
gushiqiao's avatar
gushiqiao committed
744
        "unload_modules_val": False,
gushiqiao's avatar
gushiqiao committed
745
746
747
748
        "attention_type_val": attn_op_choices[0][1],
        "quant_op_val": quant_op_choices[0][1],
        "use_tiling_vae_val": False,
    }
gushiqiao's avatar
gushiqiao committed
749

gushiqiao's avatar
gushiqiao committed
750
751
752
    gpu_memory = round(get_gpu_memory())
    cpu_memory = round(get_cpu_memory())

Gu Shiqiao's avatar
Gu Shiqiao committed
753
    attn_priority = ["sage_attn3", "sage_attn2", "flash_attn3", "flash_attn2", "torch_sdpa"]
gushiqiao's avatar
gushiqiao committed
754
755
756
757

    if is_ada_architecture_gpu():
        quant_op_priority = ["q8f", "vllm", "sgl"]
    else:
Gu Shiqiao's avatar
Gu Shiqiao committed
758
        quant_op_priority = ["vllm", "sgl", "q8f"]
gushiqiao's avatar
gushiqiao committed
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787

    for op in attn_priority:
        if dict(available_attn_ops).get(op):
            default_config["attention_type_val"] = dict(attn_op_choices)[op]
            break

    for op in quant_op_priority:
        if dict(available_quant_ops).get(op):
            default_config["quant_op_val"] = dict(quant_op_choices)[op]
            break

    if resolution in [
        "1280x720",
        "720x1280",
        "1280x544",
        "544x1280",
        "1104x832",
        "832x1104",
        "960x960",
    ]:
        res = "720p"
    elif resolution in [
        "960x544",
        "544x960",
    ]:
        res = "540p"
    else:
        res = "480p"

Gu Shiqiao's avatar
Gu Shiqiao committed
788
    if res == "720p":
gushiqiao's avatar
gushiqiao committed
789
790
        gpu_rules = [
            (80, {}),
Gu Shiqiao's avatar
Gu Shiqiao committed
791
792
            (40, {"cpu_offload_val": False, "t5_cpu_offload_val": True, "vae_cpu_offload_val": True, "clip_cpu_offload_val": True}),
            (32, {"cpu_offload_val": True, "t5_cpu_offload_val": False, "vae_cpu_offload_val": False, "clip_cpu_offload_val": False}),
gushiqiao's avatar
gushiqiao committed
793
794
795
796
797
798
799
800
801
802
803
804
805
            (
                24,
                {
                    "cpu_offload_val": True,
                    "use_tiling_vae_val": True,
                },
            ),
            (
                16,
                {
                    "cpu_offload_val": True,
                    "use_tiling_vae_val": True,
                    "offload_granularity_val": "phase",
Gu Shiqiao's avatar
Gu Shiqiao committed
806
807
                    "rope_chunk_val": True,
                    "rope_chunk_size_val": 100,
gushiqiao's avatar
gushiqiao committed
808
809
810
811
812
813
814
815
                },
            ),
            (
                8,
                {
                    "cpu_offload_val": True,
                    "use_tiling_vae_val": True,
                    "offload_granularity_val": "phase",
Gu Shiqiao's avatar
Gu Shiqiao committed
816
817
                    "rope_chunk_val": True,
                    "rope_chunk_size_val": 100,
gushiqiao's avatar
gushiqiao committed
818
819
820
821
822
                    "clean_cuda_cache_val": True,
                },
            ),
        ]

Gu Shiqiao's avatar
Gu Shiqiao committed
823
    else:
gushiqiao's avatar
gushiqiao committed
824
825
        gpu_rules = [
            (80, {}),
Gu Shiqiao's avatar
Gu Shiqiao committed
826
827
            (40, {"cpu_offload_val": False, "t5_cpu_offload_val": True, "vae_cpu_offload_val": True, "clip_cpu_offload_val": True}),
            (32, {"cpu_offload_val": True, "t5_cpu_offload_val": False, "vae_cpu_offload_val": False, "clip_cpu_offload_val": False}),
gushiqiao's avatar
gushiqiao committed
828
            (
Gu Shiqiao's avatar
Gu Shiqiao committed
829
                24,
gushiqiao's avatar
gushiqiao committed
830
831
832
                {
                    "cpu_offload_val": True,
                    "use_tiling_vae_val": True,
gushiqiao's avatar
gushiqiao committed
833
834
                },
            ),
gushiqiao's avatar
gushiqiao committed
835
836
            (
                16,
gushiqiao's avatar
gushiqiao committed
837
                {
Gu Shiqiao's avatar
Gu Shiqiao committed
838
839
840
                    "cpu_offload_val": True,
                    "use_tiling_vae_val": True,
                    "offload_granularity_val": "phase",
gushiqiao's avatar
gushiqiao committed
841
                },
gushiqiao's avatar
gushiqiao committed
842
            ),
gushiqiao's avatar
gushiqiao committed
843
            (
Gu Shiqiao's avatar
Gu Shiqiao committed
844
                8,
gushiqiao's avatar
gushiqiao committed
845
                {
Gu Shiqiao's avatar
Gu Shiqiao committed
846
847
848
                    "cpu_offload_val": True,
                    "use_tiling_vae_val": True,
                    "offload_granularity_val": "phase",
gushiqiao's avatar
gushiqiao committed
849
850
851
                },
            ),
        ]
gushiqiao's avatar
gushiqiao committed
852

Gu Shiqiao's avatar
Gu Shiqiao committed
853
854
855
856
857
858
859
860
861
862
863
864
865
    cpu_rules = [
        (128, {}),
        (64, {}),
        (32, {"unload_modules_val": True}),
        (
            16,
            {
                "lazy_load_val": True,
                "unload_modules_val": True,
            },
        ),
    ]

gushiqiao's avatar
gushiqiao committed
866
867
868
869
870
871
872
873
874
875
    for threshold, updates in gpu_rules:
        if gpu_memory >= threshold:
            default_config.update(updates)
            break

    for threshold, updates in cpu_rules:
        if cpu_memory >= threshold:
            default_config.update(updates)
            break

Gu Shiqiao's avatar
Gu Shiqiao committed
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
    return (
        gr.update(value=default_config["lazy_load_val"]),
        gr.update(value=default_config["rope_chunk_val"]),
        gr.update(value=default_config["rope_chunk_size_val"]),
        gr.update(value=default_config["clean_cuda_cache_val"]),
        gr.update(value=default_config["cpu_offload_val"]),
        gr.update(value=default_config["offload_granularity_val"]),
        gr.update(value=default_config["t5_cpu_offload_val"]),
        gr.update(value=default_config["clip_cpu_offload_val"]),
        gr.update(value=default_config["vae_cpu_offload_val"]),
        gr.update(value=default_config["unload_modules_val"]),
        gr.update(value=default_config["attention_type_val"]),
        gr.update(value=default_config["quant_op_val"]),
        gr.update(value=default_config["use_tiling_vae_val"]),
    )
gushiqiao's avatar
gushiqiao committed
891
892


Gu Shiqiao's avatar
Gu Shiqiao committed
893
css = """
Gu Shiqiao's avatar
Gu Shiqiao committed
894
        .main-content { max-width: 1600px; margin: auto; padding: 20px; }
gushiqiao's avatar
gushiqiao committed
895
        .warning { color: #ff6b6b; font-weight: bold; }
Gu Shiqiao's avatar
Gu Shiqiao committed
896
897
898
899
900
901
902
903

        /* Model configuration area styles */
        .model-config {
            margin-bottom: 20px !important;
            border: 1px solid #e0e0e0;
            border-radius: 12px;
            padding: 15px;
            background: linear-gradient(135deg, #f5f7fa 0%, #c3cfe2 100%);
gushiqiao's avatar
gushiqiao committed
904
        }
Gu Shiqiao's avatar
Gu Shiqiao committed
905
906
907
908
909
910
911
912

        /* Input parameters area styles */
        .input-params {
            margin-bottom: 20px !important;
            border: 1px solid #e0e0e0;
            border-radius: 12px;
            padding: 15px;
            background: linear-gradient(135deg, #fff5f5 0%, #ffeef0 100%);
gushiqiao's avatar
gushiqiao committed
913
        }
Gu Shiqiao's avatar
Gu Shiqiao committed
914
915
916
917
918
919
920
921

        /* Output video area styles */
        .output-video {
            border: 1px solid #e0e0e0;
            border-radius: 12px;
            padding: 20px;
            background: linear-gradient(135deg, #e0f2fe 0%, #bae6fd 100%);
            min-height: 400px;
gushiqiao's avatar
gushiqiao committed
922
        }
gushiqiao's avatar
gushiqiao committed
923

Gu Shiqiao's avatar
Gu Shiqiao committed
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
        /* Generate button styles */
        .generate-btn {
            width: 100%;
            margin-top: 20px;
            padding: 15px 30px !important;
            font-size: 18px !important;
            font-weight: bold !important;
            background: linear-gradient(135deg, #667eea 0%, #764ba2 100%) !important;
            border: none !important;
            border-radius: 10px !important;
            box-shadow: 0 4px 15px rgba(102, 126, 234, 0.4) !important;
            transition: all 0.3s ease !important;
        }
        .generate-btn:hover {
            transform: translateY(-2px);
            box-shadow: 0 6px 20px rgba(102, 126, 234, 0.6) !important;
        }
gushiqiao's avatar
gushiqiao committed
941

Gu Shiqiao's avatar
Gu Shiqiao committed
942
943
944
945
946
947
948
949
        /* Accordion header styles */
        .model-config .gr-accordion-header,
        .input-params .gr-accordion-header,
        .output-video .gr-accordion-header {
            font-size: 20px !important;
            font-weight: bold !important;
            padding: 15px !important;
        }
gushiqiao's avatar
gushiqiao committed
950

Gu Shiqiao's avatar
Gu Shiqiao committed
951
952
953
954
        /* Optimize spacing */
        .gr-row {
            margin-bottom: 15px;
        }
gushiqiao's avatar
gushiqiao committed
955

Gu Shiqiao's avatar
Gu Shiqiao committed
956
957
958
959
960
        /* Video player styles */
        .output-video video {
            border-radius: 10px;
            box-shadow: 0 4px 15px rgba(0, 0, 0, 0.1);
        }
Gu Shiqiao's avatar
Gu Shiqiao committed
961
    """
Gu Shiqiao's avatar
Gu Shiqiao committed
962

Gu Shiqiao's avatar
Gu Shiqiao committed
963
964
965
966
967

def main():
    with gr.Blocks(title="Lightx2v (Lightweight Video Inference and Generation Engine)") as demo:
        gr.Markdown(f"# 🎬 LightX2V Video Generator")
        gr.HTML(f"<style>{css}</style>")
Gu Shiqiao's avatar
Gu Shiqiao committed
968
969
970
971
972
973
974
975
976
977
978
979
980
981
        # Main layout: left and right columns
        with gr.Row():
            # Left: configuration and input area
            with gr.Column(scale=5):
                # Model configuration area
                with gr.Accordion("🗂️ Model Configuration", open=True, elem_classes=["model-config"]):
                    # FP8 support notice
                    if not is_fp8_supported_gpu():
                        gr.Markdown("⚠️ **Your device does not support FP8 inference**. Models containing FP8 have been automatically hidden.")

                    # Hidden state components
                    model_path_input = gr.Textbox(value=model_path, visible=False)

                    # Model type + Task type
gushiqiao's avatar
gushiqiao committed
982
                    with gr.Row():
Gu Shiqiao's avatar
Gu Shiqiao committed
983
984
985
986
987
988
989
990
991
992
993
                        model_type_input = gr.Radio(
                            label="Model Type",
                            choices=["wan2.1", "wan2.2"],
                            value="wan2.1",
                            info="wan2.2 requires separate high noise and low noise models",
                        )
                        task_type_input = gr.Radio(
                            label="Task Type",
                            choices=["i2v", "t2v"],
                            value="i2v",
                            info="i2v: Image-to-video, t2v: Text-to-video",
gushiqiao's avatar
gushiqiao committed
994
995
                        )

Gu Shiqiao's avatar
Gu Shiqiao committed
996
997
998
999
1000
1001
1002
1003
                    # wan2.1: Diffusion model (single row)
                    with gr.Row() as wan21_row:
                        dit_path_input = gr.Dropdown(
                            label="🎨 Diffusion Model",
                            choices=get_dit_choices(model_path, "wan2.1"),
                            value=get_dit_choices(model_path, "wan2.1")[0] if get_dit_choices(model_path, "wan2.1") else "",
                            allow_custom_value=True,
                            visible=True,
gushiqiao's avatar
gushiqiao committed
1004
1005
                        )

Gu Shiqiao's avatar
Gu Shiqiao committed
1006
1007
1008
1009
1010
1011
1012
                    # wan2.2 specific: high noise model + low noise model (hidden by default)
                    with gr.Row(visible=False) as wan22_row:
                        high_noise_path_input = gr.Dropdown(
                            label="🔊 High Noise Model",
                            choices=get_high_noise_choices(model_path),
                            value=get_high_noise_choices(model_path)[0] if get_high_noise_choices(model_path) else "",
                            allow_custom_value=True,
gushiqiao's avatar
gushiqiao committed
1013
                        )
Gu Shiqiao's avatar
Gu Shiqiao committed
1014
1015
1016
1017
1018
                        low_noise_path_input = gr.Dropdown(
                            label="🔇 Low Noise Model",
                            choices=get_low_noise_choices(model_path),
                            value=get_low_noise_choices(model_path)[0] if get_low_noise_choices(model_path) else "",
                            allow_custom_value=True,
gushiqiao's avatar
gushiqiao committed
1019
1020
                        )

Gu Shiqiao's avatar
Gu Shiqiao committed
1021
                    # Text encoder (single row)
gushiqiao's avatar
gushiqiao committed
1022
                    with gr.Row():
Gu Shiqiao's avatar
Gu Shiqiao committed
1023
1024
1025
1026
1027
                        t5_path_input = gr.Dropdown(
                            label="📝 Text Encoder",
                            choices=get_t5_choices(model_path),
                            value=get_t5_choices(model_path)[0] if get_t5_choices(model_path) else "",
                            allow_custom_value=True,
gushiqiao's avatar
gushiqiao committed
1028
                        )
gushiqiao's avatar
gushiqiao committed
1029

Gu Shiqiao's avatar
Gu Shiqiao committed
1030
1031
1032
1033
1034
1035
1036
                    # Image encoder + VAE decoder
                    with gr.Row():
                        clip_path_input = gr.Dropdown(
                            label="🖼️ Image Encoder",
                            choices=get_clip_choices(model_path),
                            value=get_clip_choices(model_path)[0] if get_clip_choices(model_path) else "",
                            allow_custom_value=True,
gushiqiao's avatar
gushiqiao committed
1037
                        )
Gu Shiqiao's avatar
Gu Shiqiao committed
1038
1039
1040
1041
1042
                        vae_path_input = gr.Dropdown(
                            label="🎞️ VAE Decoder",
                            choices=get_vae_choices(model_path),
                            value=get_vae_choices(model_path)[0] if get_vae_choices(model_path) else "",
                            allow_custom_value=True,
gushiqiao's avatar
gushiqiao committed
1043
1044
                        )

Gu Shiqiao's avatar
Gu Shiqiao committed
1045
                    # Attention operator and quantization matrix multiplication operator
gushiqiao's avatar
gushiqiao committed
1046
1047
                    with gr.Row():
                        attention_type = gr.Dropdown(
Gu Shiqiao's avatar
Gu Shiqiao committed
1048
                            label="⚡ Attention Operator",
gushiqiao's avatar
gushiqiao committed
1049
                            choices=[op[1] for op in attn_op_choices],
Gu Shiqiao's avatar
Gu Shiqiao committed
1050
                            value=attn_op_choices[0][1] if attn_op_choices else "",
gushiqiao's avatar
gushiqiao committed
1051
                            info="Use appropriate attention operators to accelerate inference",
gushiqiao's avatar
gushiqiao committed
1052
1053
                        )
                        quant_op = gr.Dropdown(
gushiqiao's avatar
gushiqiao committed
1054
1055
1056
                            label="Quantization Matmul Operator",
                            choices=[op[1] for op in quant_op_choices],
                            value=quant_op_choices[0][1],
Gu Shiqiao's avatar
Gu Shiqiao committed
1057
                            info="Select quantization matrix multiplication operator to accelerate inference",
gushiqiao's avatar
gushiqiao committed
1058
                            interactive=True,
gushiqiao's avatar
gushiqiao committed
1059
                        )
Gu Shiqiao's avatar
Gu Shiqiao committed
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097

                    # Determine if model is distill version
                    def is_distill_model(model_type, dit_path, high_noise_path):
                        """Determine if model is distill version based on model type and path"""
                        if model_type == "wan2.1":
                            check_name = dit_path.lower() if dit_path else ""
                        else:
                            check_name = high_noise_path.lower() if high_noise_path else ""
                        return "4step" in check_name

                    # Model type change event
                    def on_model_type_change(model_type, model_path_val):
                        if model_type == "wan2.2":
                            return gr.update(visible=False), gr.update(visible=True), gr.update()
                        else:
                            # Update wan2.1 Diffusion model options
                            dit_choices = get_dit_choices(model_path_val, "wan2.1")
                            return (
                                gr.update(visible=True),
                                gr.update(visible=False),
                                gr.update(choices=dit_choices, value=dit_choices[0] if dit_choices else ""),
                            )

                    model_type_input.change(
                        fn=on_model_type_change,
                        inputs=[model_type_input, model_path_input],
                        outputs=[wan21_row, wan22_row, dit_path_input],
                    )

                # Input parameters area
                with gr.Accordion("📥 Input Parameters", open=True, elem_classes=["input-params"]):
                    # Image input (shown for i2v)
                    with gr.Row(visible=True) as image_input_row:
                        image_path = gr.Image(
                            label="Input Image",
                            type="filepath",
                            height=300,
                            interactive=True,
gushiqiao's avatar
gushiqiao committed
1098
1099
                        )

Gu Shiqiao's avatar
Gu Shiqiao committed
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
                    # Task type change event
                    def on_task_type_change(task_type):
                        return gr.update(visible=(task_type == "i2v"))

                    task_type_input.change(
                        fn=on_task_type_change,
                        inputs=[task_type_input],
                        outputs=[image_input_row],
                    )

gushiqiao's avatar
gushiqiao committed
1110
                    with gr.Row():
Gu Shiqiao's avatar
Gu Shiqiao committed
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
                        with gr.Column():
                            prompt = gr.Textbox(
                                label="Prompt",
                                lines=3,
                                placeholder="Describe the video content...",
                                max_lines=5,
                            )
                        with gr.Column():
                            negative_prompt = gr.Textbox(
                                label="Negative Prompt",
                                lines=3,
                                placeholder="What you don't want to appear in the video...",
                                max_lines=5,
                                value="Camera shake, bright tones, overexposed, static, blurred details, subtitles, style, works, paintings, images, static, overall gray, worst quality, low quality, JPEG compression residue, ugly, incomplete, extra fingers, poorly drawn hands, poorly drawn faces, deformed, disfigured, misshapen limbs, fused fingers, still picture, messy background, three legs, many people in the background, walking backwards",
                            )
                        with gr.Column():
                            resolution = gr.Dropdown(
                                choices=[
                                    # 720p
                                    ("1280x720 (16:9, 720p)", "1280x720"),
                                    ("720x1280 (9:16, 720p)", "720x1280"),
                                    ("1280x544 (21:9, 720p)", "1280x544"),
                                    ("544x1280 (9:21, 720p)", "544x1280"),
                                    ("1104x832 (4:3, 720p)", "1104x832"),
                                    ("832x1104 (3:4, 720p)", "832x1104"),
                                    ("960x960 (1:1, 720p)", "960x960"),
                                    # 480p
                                    ("960x544 (16:9, 540p)", "960x544"),
                                    ("544x960 (9:16, 540p)", "544x960"),
                                    ("832x480 (16:9, 480p)", "832x480"),
                                    ("480x832 (9:16, 480p)", "480x832"),
                                    ("832x624 (4:3, 480p)", "832x624"),
                                    ("624x832 (3:4, 480p)", "624x832"),
                                    ("720x720 (1:1, 480p)", "720x720"),
                                    ("512x512 (1:1, 480p)", "512x512"),
                                ],
                                value="832x480",
                                label="Maximum Resolution",
                            )

                        with gr.Column(scale=9):
                            seed = gr.Slider(
                                label="Random Seed",
                                minimum=0,
                                maximum=MAX_NUMPY_SEED,
                                step=1,
                                value=generate_random_seed(),
                            )
                        with gr.Column():
                            default_dit = get_dit_choices(model_path, "wan2.1")[0] if get_dit_choices(model_path, "wan2.1") else ""
                            default_high_noise = get_high_noise_choices(model_path)[0] if get_high_noise_choices(model_path) else ""
                            default_is_distill = is_distill_model("wan2.1", default_dit, default_high_noise)

                            if default_is_distill:
                                infer_steps = gr.Slider(
                                    label="Inference Steps",
                                    minimum=1,
                                    maximum=100,
                                    step=1,
                                    value=4,
                                    info="Distill model inference steps default to 4.",
                                )
                            else:
                                infer_steps = gr.Slider(
                                    label="Inference Steps",
                                    minimum=1,
                                    maximum=100,
                                    step=1,
                                    value=40,
                                    info="Number of inference steps for video generation. Increasing steps may improve quality but reduce speed.",
                                )

                            # Dynamically update inference steps when model path changes
                            def update_infer_steps(model_type, dit_path, high_noise_path):
                                is_distill = is_distill_model(model_type, dit_path, high_noise_path)
                                if is_distill:
                                    return gr.update(minimum=1, maximum=100, value=4, interactive=True)
                                else:
                                    return gr.update(minimum=1, maximum=100, value=40, interactive=True)

                            # Listen to model path changes
                            dit_path_input.change(
                                fn=lambda mt, dp, hnp: update_infer_steps(mt, dp, hnp),
                                inputs=[model_type_input, dit_path_input, high_noise_path_input],
                                outputs=[infer_steps],
                            )
                            high_noise_path_input.change(
                                fn=lambda mt, dp, hnp: update_infer_steps(mt, dp, hnp),
                                inputs=[model_type_input, dit_path_input, high_noise_path_input],
                                outputs=[infer_steps],
                            )
                            model_type_input.change(
                                fn=lambda mt, dp, hnp: update_infer_steps(mt, dp, hnp),
                                inputs=[model_type_input, dit_path_input, high_noise_path_input],
                                outputs=[infer_steps],
                            )

                    # Set default CFG based on model class
                    # CFG scale factor: default to 1 for distill, otherwise 5
                    default_cfg_scale = 1 if default_is_distill else 5
                    # enable_cfg is not exposed to frontend, automatically set based on cfg_scale
                    # If cfg_scale == 1, then enable_cfg = False, otherwise enable_cfg = True
                    default_enable_cfg = False if default_cfg_scale == 1 else True
                    enable_cfg = gr.Checkbox(
                        label="Enable Classifier-Free Guidance",
                        value=default_enable_cfg,
                        visible=False,  # Hidden, not exposed to frontend
                    )

                    with gr.Row():
                        sample_shift = gr.Slider(
                            label="Distribution Shift",
                            value=5,
                            minimum=0,
                            maximum=10,
                            step=1,
                            info="Controls the degree of distribution shift for samples. Larger values indicate more significant shifts.",
gushiqiao's avatar
gushiqiao committed
1228
                        )
Gu Shiqiao's avatar
Gu Shiqiao committed
1229
1230
1231
1232
1233
1234
1235
                        cfg_scale = gr.Slider(
                            label="CFG Scale Factor",
                            minimum=1,
                            maximum=10,
                            step=1,
                            value=default_cfg_scale,
                            info="Controls the influence strength of the prompt. Higher values give more influence to the prompt. When value is 1, CFG is automatically disabled.",
gushiqiao's avatar
gushiqiao committed
1236
1237
                        )

Gu Shiqiao's avatar
Gu Shiqiao committed
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
                    # Update enable_cfg based on cfg_scale
                    def update_enable_cfg(cfg_scale_val):
                        """Automatically set enable_cfg based on cfg_scale value"""
                        if cfg_scale_val == 1:
                            return gr.update(value=False)
                        else:
                            return gr.update(value=True)

                    # Dynamically update CFG scale factor and enable_cfg when model path changes
                    def update_cfg_scale(model_type, dit_path, high_noise_path):
                        is_distill = is_distill_model(model_type, dit_path, high_noise_path)
                        if is_distill:
                            new_cfg_scale = 1
                        else:
                            new_cfg_scale = 5
                        new_enable_cfg = False if new_cfg_scale == 1 else True
                        return gr.update(value=new_cfg_scale), gr.update(value=new_enable_cfg)

                    dit_path_input.change(
                        fn=lambda mt, dp, hnp: update_cfg_scale(mt, dp, hnp),
                        inputs=[model_type_input, dit_path_input, high_noise_path_input],
                        outputs=[cfg_scale, enable_cfg],
                    )
                    high_noise_path_input.change(
                        fn=lambda mt, dp, hnp: update_cfg_scale(mt, dp, hnp),
                        inputs=[model_type_input, dit_path_input, high_noise_path_input],
                        outputs=[cfg_scale, enable_cfg],
                    )
                    model_type_input.change(
                        fn=lambda mt, dp, hnp: update_cfg_scale(mt, dp, hnp),
                        inputs=[model_type_input, dit_path_input, high_noise_path_input],
                        outputs=[cfg_scale, enable_cfg],
                    )

                    cfg_scale.change(
                        fn=update_enable_cfg,
                        inputs=[cfg_scale],
                        outputs=[enable_cfg],
                    )

gushiqiao's avatar
gushiqiao committed
1278
                    with gr.Row():
Gu Shiqiao's avatar
Gu Shiqiao committed
1279
1280
1281
1282
1283
1284
1285
                        fps = gr.Slider(
                            label="Frames Per Second (FPS)",
                            minimum=8,
                            maximum=30,
                            step=1,
                            value=16,
                            info="Frames per second of the video. Higher FPS results in smoother videos.",
gushiqiao's avatar
gushiqiao committed
1286
                        )
Gu Shiqiao's avatar
Gu Shiqiao committed
1287
1288
1289
1290
1291
1292
1293
                        num_frames = gr.Slider(
                            label="Total Frames",
                            minimum=16,
                            maximum=120,
                            step=1,
                            value=81,
                            info="Total number of frames in the video. More frames result in longer videos.",
gushiqiao's avatar
gushiqiao committed
1294
1295
                        )

Gu Shiqiao's avatar
Gu Shiqiao committed
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
                    save_result_path = gr.Textbox(
                        label="Output Video Path",
                        value=generate_unique_filename(output_dir),
                        info="Must include .mp4 extension. If left blank or using the default value, a unique filename will be automatically generated.",
                        visible=False,  # Hide output path, auto-generated
                    )

            with gr.Column(scale=4):
                with gr.Accordion("📤 Generated Video", open=True, elem_classes=["output-video"]):
                    output_video = gr.Video(
                        label="",
                        height=600,
                        autoplay=True,
                        show_label=False,
                    )

                    infer_btn = gr.Button("🎬 Generate Video", variant="primary", size="lg", elem_classes=["generate-btn"])

            rope_chunk = gr.Checkbox(label="Chunked Rotary Position Embedding", value=False, visible=False)
            rope_chunk_size = gr.Slider(label="Rotary Embedding Chunk Size", value=100, minimum=100, maximum=10000, step=100, visible=False)
            unload_modules = gr.Checkbox(label="Unload Modules", value=False, visible=False)
            clean_cuda_cache = gr.Checkbox(label="Clean CUDA Memory Cache", value=False, visible=False)
            cpu_offload = gr.Checkbox(label="CPU Offloading", value=False, visible=False)
            lazy_load = gr.Checkbox(label="Enable Lazy Loading", value=False, visible=False)
            offload_granularity = gr.Dropdown(label="Dit Offload Granularity", choices=["block", "phase"], value="phase", visible=False)
            t5_cpu_offload = gr.Checkbox(label="T5 CPU Offloading", value=False, visible=False)
            clip_cpu_offload = gr.Checkbox(label="CLIP CPU Offloading", value=False, visible=False)
            vae_cpu_offload = gr.Checkbox(label="VAE CPU Offloading", value=False, visible=False)
            use_tiling_vae = gr.Checkbox(label="VAE Tiling Inference", value=False, visible=False)

        resolution.change(
            fn=auto_configure,
            inputs=[resolution],
            outputs=[
                lazy_load,
                rope_chunk,
                rope_chunk_size,
                clean_cuda_cache,
                cpu_offload,
                offload_granularity,
                t5_cpu_offload,
                clip_cpu_offload,
                vae_cpu_offload,
                unload_modules,
                attention_type,
                quant_op,
                use_tiling_vae,
            ],
        )

        demo.load(
            fn=lambda res: auto_configure(res),
            inputs=[resolution],
            outputs=[
                lazy_load,
                rope_chunk,
                rope_chunk_size,
                clean_cuda_cache,
                cpu_offload,
                offload_granularity,
                t5_cpu_offload,
                clip_cpu_offload,
                vae_cpu_offload,
                unload_modules,
                attention_type,
                quant_op,
                use_tiling_vae,
            ],
        )

        infer_btn.click(
            fn=run_inference,
            inputs=[
                prompt,
                negative_prompt,
                save_result_path,
                infer_steps,
                num_frames,
                resolution,
                seed,
                sample_shift,
                enable_cfg,
                cfg_scale,
                fps,
                use_tiling_vae,
                lazy_load,
                cpu_offload,
                offload_granularity,
                t5_cpu_offload,
                clip_cpu_offload,
                vae_cpu_offload,
                unload_modules,
                attention_type,
                quant_op,
                rope_chunk,
                rope_chunk_size,
                clean_cuda_cache,
                model_path_input,
                model_type_input,
                task_type_input,
                dit_path_input,
                high_noise_path_input,
                low_noise_path_input,
                t5_path_input,
                clip_path_input,
                vae_path_input,
                image_path,
            ],
            outputs=output_video,
        )
gushiqiao's avatar
gushiqiao committed
1406

gushiqiao's avatar
gushiqiao committed
1407
    demo.launch(share=True, server_port=args.server_port, server_name=args.server_name, inbrowser=True, allowed_paths=[output_dir])
gushiqiao's avatar
gushiqiao committed
1408
1409
1410


if __name__ == "__main__":
Gu Shiqiao's avatar
Gu Shiqiao committed
1411
    parser = argparse.ArgumentParser(description="Lightweight Video Generation")
gushiqiao's avatar
gushiqiao committed
1412
1413
    parser.add_argument("--model_path", type=str, required=True, help="Model folder path")
    parser.add_argument("--server_port", type=int, default=7862, help="Server port")
Gu Shiqiao's avatar
Gu Shiqiao committed
1414
    parser.add_argument("--server_name", type=str, default="0.0.0.0", help="Server IP")
gushiqiao's avatar
gushiqiao committed
1415
    parser.add_argument("--output_dir", type=str, default="./outputs", help="Output video save directory")
gushiqiao's avatar
gushiqiao committed
1416
1417
    args = parser.parse_args()

Gu Shiqiao's avatar
Gu Shiqiao committed
1418
    global model_path, model_cls, output_dir
gushiqiao's avatar
gushiqiao committed
1419
    model_path = args.model_path
Gu Shiqiao's avatar
Gu Shiqiao committed
1420
    model_cls = "wan2.1"
gushiqiao's avatar
gushiqiao committed
1421
    output_dir = args.output_dir
gushiqiao's avatar
gushiqiao committed
1422

gushiqiao's avatar
gushiqiao committed
1423
    main()