conv3d.py 2.42 KB
Newer Older
helloyongyang's avatar
helloyongyang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
import torch
from abc import ABCMeta, abstractmethod
from lightx2v.utils.registry_factory import CONV3D_WEIGHT_REGISTER


class Conv3dWeightTemplate(metaclass=ABCMeta):
    def __init__(self, weight_name, bias_name, stride=1, padding=0, dilation=1, groups=1):
        self.weight_name = weight_name
        self.bias_name = bias_name
        self.stride = stride
        self.padding = padding
        self.dilation = dilation
        self.groups = groups
        self.config = {}

    @abstractmethod
    def load(self, weight_dict):
        pass

    @abstractmethod
    def apply(self, input_tensor):
        pass

    def set_config(self, config=None):
        if config is not None:
            self.config = config


Dongz's avatar
Dongz committed
29
@CONV3D_WEIGHT_REGISTER("Default")
helloyongyang's avatar
helloyongyang committed
30
31
32
33
34
class Conv3dWeight(Conv3dWeightTemplate):
    def __init__(self, weight_name, bias_name, stride=1, padding=0, dilation=1, groups=1):
        super().__init__(weight_name, bias_name, stride, padding, dilation, groups)

    def load(self, weight_dict):
gushiqiao's avatar
gushiqiao committed
35
36
37
38
        self.weight = weight_dict[self.weight_name]
        self.bias = weight_dict[self.bias_name] if self.bias_name is not None else None
        self.pinned_weight = torch.empty(self.weight.shape, pin_memory=True, dtype=self.weight.dtype)
        self.pinned_bias = torch.empty(self.bias.shape, pin_memory=True, dtype=self.bias.dtype) if self.bias_name is not None else None
helloyongyang's avatar
helloyongyang committed
39
40

    def apply(self, input_tensor):
gushiqiao's avatar
Fix  
gushiqiao committed
41
42
43
44
45
46
47
48
49
        input_tensor = torch.nn.functional.conv3d(
            input_tensor,
            weight=self.weight,
            bias=self.bias,
            stride=self.stride,
            padding=self.padding,
            dilation=self.dilation,
            groups=self.groups,
        )
helloyongyang's avatar
helloyongyang committed
50
51
        return input_tensor

52
53
    def to_cpu(self, non_blocking=False):
        self.weight = self.weight.to("cpu", non_blocking=non_blocking)
helloyongyang's avatar
helloyongyang committed
54
        if self.bias is not None:
55
            self.bias = self.bias.to("cpu", non_blocking=non_blocking)
helloyongyang's avatar
helloyongyang committed
56

57
58
    def to_cuda(self, non_blocking=False):
        self.weight = self.weight.cuda(non_blocking=non_blocking)
helloyongyang's avatar
helloyongyang committed
59
        if self.bias is not None:
60
            self.bias = self.bias.cuda(non_blocking=non_blocking)
TorynCurtis's avatar
TorynCurtis committed
61

62
63
64
65
66
67
68
    def state_dict(self, destination=None):
        if destination is None:
            destination = {}
        destination[self.weight_name] = self.weight.cpu().detach().clone()
        if self.bias is not None:
            destination[self.bias_name] = self.bias.cpu().detach().clone()
        return destination