text_encoder.py 6.04 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import argparse
from typing import Optional
from fastapi import FastAPI
from pydantic import BaseModel
from loguru import logger
import uvicorn
import json
import os
import torch

from lightx2v.models.input_encoders.hf.t5.model import T5EncoderModel
from lightx2v.models.input_encoders.hf.llama.model import TextEncoderHFLlamaModel
from lightx2v.models.input_encoders.hf.clip.model import TextEncoderHFClipModel
from lightx2v.models.input_encoders.hf.llava.model import TextEncoderHFLlavaModel

from lightx2v.utils.profiler import ProfilingContext
from lightx2v.utils.set_config import set_config
from lightx2v.utils.service_utils import TaskStatusMessage, BaseServiceStatus, ProcessManager, TensorTransporter, ImageTransporter

tensor_transporter = TensorTransporter()
image_transporter = ImageTransporter()

# =========================
# FastAPI Related Code
# =========================

runner = None

app = FastAPI()


class Message(BaseModel):
    task_id: str
    task_id_must_unique: bool = False

    text: str
    img: Optional[bytes] = None

    def get(self, key, default=None):
        return getattr(self, key, default)


class TextEncoderServiceStatus(BaseServiceStatus):
    pass


class TextEncoderRunner:
    def __init__(self, config):
        self.config = config
        self.text_encoders = self.get_text_encoder_model()

    def get_text_encoder_model(self):
        if "wan2.1" in self.config.model_cls:
            text_encoder = T5EncoderModel(
                text_len=self.config["text_len"],
                dtype=torch.bfloat16,
                device="cuda",
                checkpoint_path=os.path.join(self.config.model_path, "models_t5_umt5-xxl-enc-bf16.pth"),
                tokenizer_path=os.path.join(self.config.model_path, "google/umt5-xxl"),
                shard_fn=None,
            )
            text_encoders = [text_encoder]
        elif self.config.model_cls in ["hunyuan"]:
            if self.config.task == "t2v":
                text_encoder_1 = TextEncoderHFLlamaModel(os.path.join(self.config.model_path, "text_encoder"), "cuda")
            else:
                text_encoder_1 = TextEncoderHFLlavaModel(os.path.join(self.config.model_path, "text_encoder_i2v"), "cuda")
            text_encoder_2 = TextEncoderHFClipModel(os.path.join(self.config.model_path, "text_encoder_2"), "cuda")
            text_encoders = [text_encoder_1, text_encoder_2]
        else:
            raise ValueError(f"Unsupported model class: {self.config.model_cls}")
        return text_encoders

    def _run_text_encoder(self, text, img):
        if "wan2.1" in self.config.model_cls:
            text_encoder_output = {}
            n_prompt = self.config.get("negative_prompt", "")
            context = self.text_encoders[0].infer([text], self.config)
            context_null = self.text_encoders[0].infer([n_prompt if n_prompt else ""], self.config)
            text_encoder_output["context"] = context
            text_encoder_output["context_null"] = context_null
        elif self.config.model_cls in ["hunyuan"]:
            text_encoder_output = {}
            for i, encoder in enumerate(self.text_encoders):
                if self.config.task == "i2v" and i == 0:
                    img = image_transporter.load_image(img)
                    text_state, attention_mask = encoder.infer(text, img, self.config)
                else:
                    text_state, attention_mask = encoder.infer(text, self.config)
                text_encoder_output[f"text_encoder_{i + 1}_text_states"] = text_state.to(dtype=torch.bfloat16)
                text_encoder_output[f"text_encoder_{i + 1}_attention_mask"] = attention_mask
        else:
            raise ValueError(f"Unsupported model class: {self.config.model_cls}")
        return text_encoder_output


def run_text_encoder(message: Message):
    try:
        global runner
        text_encoder_output = runner._run_text_encoder(message.text, message.img)
        TextEncoderServiceStatus.complete_task(message)
        return text_encoder_output
    except Exception as e:
        logger.error(f"task_id {message.task_id} failed: {str(e)}")
        TextEncoderServiceStatus.record_failed_task(message, error=str(e))


@app.post("/v1/local/text_encoder/generate")
def v1_local_text_encoder_generate(message: Message):
    try:
        task_id = TextEncoderServiceStatus.start_task(message)
        text_encoder_output = run_text_encoder(message)
        output = tensor_transporter.prepare_tensor(text_encoder_output)
        del text_encoder_output
        return {"task_id": task_id, "task_status": "completed", "output": output, "kwargs": None}
    except RuntimeError as e:
        return {"error": str(e)}


@app.get("/v1/local/text_encoder/generate/service_status")
async def get_service_status():
    return TextEncoderServiceStatus.get_status_service()


@app.get("/v1/local/text_encoder/generate/get_all_tasks")
async def get_all_tasks():
    return TextEncoderServiceStatus.get_all_tasks()


@app.post("/v1/local/text_encoder/generate/task_status")
async def get_task_status(message: TaskStatusMessage):
    return TextEncoderServiceStatus.get_status_task_id(message.task_id)


# =========================
# Main Entry
# =========================

if __name__ == "__main__":
    ProcessManager.register_signal_handler()
    parser = argparse.ArgumentParser()
    parser.add_argument("--model_cls", type=str, required=True, choices=["wan2.1", "hunyuan", "wan2.1_causvid", "wan2.1_skyreels_v2_df"], default="hunyuan")
    parser.add_argument("--task", type=str, choices=["t2v", "i2v"], default="t2v")
    parser.add_argument("--model_path", type=str, required=True)
    parser.add_argument("--config_json", type=str, required=True)

    parser.add_argument("--port", type=int, default=9002)
    args = parser.parse_args()
    logger.info(f"args: {args}")

    with ProfilingContext("Init Server Cost"):
        config = set_config(args)
        config["mode"] = "split_server"
        logger.info(f"config:\n{json.dumps(config, ensure_ascii=False, indent=4)}")
        runner = TextEncoderRunner(config)

    uvicorn.run(app, host="0.0.0.0", port=config.port, reload=False, workers=1)