__main__.py 12.1 KB
Newer Older
helloyongyang's avatar
helloyongyang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
import argparse
import torch
import torch.distributed as dist
import os
import time
import gc
import json
import torchvision.transforms.functional as TF
import numpy as np
from PIL import Image
from lightx2v.text2v.models.text_encoders.hf.llama.model import TextEncoderHFLlamaModel
from lightx2v.text2v.models.text_encoders.hf.clip.model import TextEncoderHFClipModel
from lightx2v.text2v.models.text_encoders.hf.t5.model import T5EncoderModel

from lightx2v.text2v.models.schedulers.hunyuan.scheduler import HunyuanScheduler
from lightx2v.text2v.models.schedulers.hunyuan.feature_caching.scheduler import HunyuanSchedulerFeatureCaching
from lightx2v.text2v.models.schedulers.wan.scheduler import WanScheduler
from lightx2v.text2v.models.schedulers.wan.feature_caching.scheduler import WanSchedulerFeatureCaching

from lightx2v.text2v.models.networks.hunyuan.model import HunyuanModel
from lightx2v.text2v.models.networks.wan.model import WanModel

from lightx2v.text2v.models.video_encoders.hf.autoencoder_kl_causal_3d.model import VideoEncoderKLCausal3DModel
from lightx2v.text2v.models.video_encoders.hf.wan.vae import WanVAE
from lightx2v.utils.utils import save_videos_grid, seed_all, cache_video
from lightx2v.common.ops import *
from lightx2v.image2v.models.wan.model import CLIPModel


def load_models(args, model_config):
Dongz's avatar
Dongz committed
31
    if model_config["parallel_attn"]:
helloyongyang's avatar
helloyongyang committed
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
        cur_rank = dist.get_rank()  # 获取当前进程的 rank
        torch.cuda.set_device(cur_rank)  # 设置当前进程的 CUDA 设备
    image_encoder = None
    if args.cpu_offload:
        init_device = torch.device("cpu")
    else:
        init_device = torch.device("cuda")

    if args.model_cls == "hunyuan":
        text_encoder_1 = TextEncoderHFLlamaModel(os.path.join(args.model_path, "text_encoder"), init_device)
        text_encoder_2 = TextEncoderHFClipModel(os.path.join(args.model_path, "text_encoder_2"), init_device)
        text_encoders = [text_encoder_1, text_encoder_2]
        model = HunyuanModel(args.model_path, model_config)
        vae_model = VideoEncoderKLCausal3DModel(args.model_path, dtype=torch.float16, device=init_device)

    elif args.model_cls == "wan2.1":
        text_encoder = T5EncoderModel(
            text_len=model_config["text_len"],
            dtype=torch.bfloat16,
TorynCurtis's avatar
TorynCurtis committed
51
            device=init_device,
helloyongyang's avatar
helloyongyang committed
52
53
54
55
56
57
            checkpoint_path=os.path.join(args.model_path, "models_t5_umt5-xxl-enc-bf16.pth"),
            tokenizer_path=os.path.join(args.model_path, "google/umt5-xxl"),
            shard_fn=None,
        )
        text_encoders = [text_encoder]
        model = WanModel(args.model_path, model_config)
TorynCurtis's avatar
TorynCurtis committed
58
        vae_model = WanVAE(vae_pth=os.path.join(args.model_path, "Wan2.1_VAE.pth"), device=init_device, parallel=args.parallel_vae)
Dongz's avatar
Dongz committed
59
        if args.task == "i2v":
helloyongyang's avatar
helloyongyang committed
60
61
            image_encoder = CLIPModel(
                dtype=torch.float16,
TorynCurtis's avatar
TorynCurtis committed
62
                device=init_device,
Dongz's avatar
Dongz committed
63
64
65
                checkpoint_path=os.path.join(args.model_path, "models_clip_open-clip-xlm-roberta-large-vit-huge-14.pth"),
                tokenizer_path=os.path.join(args.model_path, "xlm-roberta-large"),
            )
helloyongyang's avatar
helloyongyang committed
66
67
68
69
70
71
72
    else:
        raise NotImplementedError(f"Unsupported model class: {args.model_cls}")

    return model, text_encoders, vae_model, image_encoder


def set_target_shape(args):
Dongz's avatar
Dongz committed
73
    if args.model_cls == "hunyuan":
helloyongyang's avatar
helloyongyang committed
74
75
76
77
78
79
80
81
        vae_scale_factor = 2 ** (4 - 1)
        args.target_shape = (
            1,
            16,
            (args.target_video_length - 1) // 4 + 1,
            int(args.target_height) // vae_scale_factor,
            int(args.target_width) // vae_scale_factor,
        )
Dongz's avatar
Dongz committed
82
83
84
85
    elif args.model_cls == "wan2.1":
        if args.task == "i2v":
            args.target_shape = (16, 21, args.lat_h, args.lat_w)
        elif args.task == "t2v":
helloyongyang's avatar
helloyongyang committed
86
87
88
89
90
91
92
93
94
95
96
            args.target_shape = (
                16,
                (args.target_video_length - 1) // 4 + 1,
                int(args.target_height) // args.vae_stride[1],
                int(args.target_width) // args.vae_stride[2],
            )


def run_image_encoder(args, image_encoder, vae_model):
    if args.model_cls == "hunyuan":
        return None
Dongz's avatar
Dongz committed
97
    elif args.model_cls == "wan2.1":
helloyongyang's avatar
helloyongyang committed
98
99
100
101
102
103
104
        img = Image.open(args.image_path).convert("RGB")
        img = TF.to_tensor(img).sub_(0.5).div_(0.5).cuda()
        clip_encoder_out = image_encoder.visual([img[:, None, :, :]]).squeeze(0).to(torch.bfloat16)

        h, w = img.shape[1:]
        aspect_ratio = h / w
        max_area = args.target_height * args.target_width
Dongz's avatar
Dongz committed
105
106
        lat_h = round(np.sqrt(max_area * aspect_ratio) // args.vae_stride[1] // args.patch_size[1] * args.patch_size[1])
        lat_w = round(np.sqrt(max_area / aspect_ratio) // args.vae_stride[2] // args.patch_size[2] * args.patch_size[2])
helloyongyang's avatar
helloyongyang committed
107
108
109
110
111
        h = lat_h * args.vae_stride[1]
        w = lat_w * args.vae_stride[2]

        args.lat_h = lat_h
        args.lat_w = lat_w
Dongz's avatar
Dongz committed
112
113

        msk = torch.ones(1, 81, lat_h, lat_w, device=torch.device("cuda"))
helloyongyang's avatar
helloyongyang committed
114
        msk[:, 1:] = 0
Dongz's avatar
Dongz committed
115
        msk = torch.concat([torch.repeat_interleave(msk[:, 0:1], repeats=4, dim=1), msk[:, 1:]], dim=1)
helloyongyang's avatar
helloyongyang committed
116
117
118
        msk = msk.view(1, msk.shape[1] // 4, 4, lat_h, lat_w)
        msk = msk.transpose(1, 2)[0]

Dongz's avatar
Dongz committed
119
        vae_encode_out = vae_model.encode([torch.concat([torch.nn.functional.interpolate(img[None].cpu(), size=(h, w), mode="bicubic").transpose(0, 1), torch.zeros(3, 80, h, w)], dim=1).cuda()])[0]
helloyongyang's avatar
helloyongyang committed
120
121
122
123
124
125
126
127
128
129
130
131
        vae_encode_out = torch.concat([msk, vae_encode_out]).to(torch.bfloat16)
        return {"clip_encoder_out": clip_encoder_out, "vae_encode_out": vae_encode_out}

    else:
        raise NotImplementedError(f"Unsupported model class: {model_cls}")


def run_text_encoder(args, text, text_encoders, model_config):
    text_encoder_output = {}
    if args.model_cls == "hunyuan":
        for i, encoder in enumerate(text_encoders):
            text_state, attention_mask = encoder.infer(text, args)
Dongz's avatar
Dongz committed
132
133
            text_encoder_output[f"text_encoder_{i + 1}_text_states"] = text_state.to(dtype=torch.bfloat16)
            text_encoder_output[f"text_encoder_{i + 1}_attention_mask"] = attention_mask
helloyongyang's avatar
helloyongyang committed
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208

    elif args.model_cls == "wan2.1":
        n_prompt = model_config.get("sample_neg_prompt", "")
        context = text_encoders[0].infer([text], args)
        context_null = text_encoders[0].infer([n_prompt if n_prompt else ""], args)
        text_encoder_output["context"] = context
        text_encoder_output["context_null"] = context_null

    else:
        raise NotImplementedError(f"Unsupported model type: {args.model_cls}")

    return text_encoder_output


def init_scheduler(args):
    if args.model_cls == "hunyuan":
        if args.feature_caching == "NoCaching":
            scheduler = HunyuanScheduler(args)
        elif args.feature_caching == "TaylorSeer":
            scheduler = HunyuanSchedulerFeatureCaching(args)
        else:
            raise NotImplementedError(f"Unsupported feature_caching type: {args.feature_caching}")

    elif args.model_cls == "wan2.1":
        if args.feature_caching == "NoCaching":
            scheduler = WanScheduler(args)
        elif args.feature_caching == "Tea":
            scheduler = WanSchedulerFeatureCaching(args)
        else:
            raise NotImplementedError(f"Unsupported feature_caching type: {args.feature_caching}")

    else:
        raise NotImplementedError(f"Unsupported model class: {args.model_cls}")
    return scheduler


def run_main_inference(args, model, text_encoder_output, image_encoder_output):
    for step_index in range(model.scheduler.infer_steps):
        torch.cuda.synchronize()
        time1 = time.time()

        model.scheduler.step_pre(step_index=step_index)

        torch.cuda.synchronize()
        time2 = time.time()

        model.infer(text_encoder_output, image_encoder_output, args)

        torch.cuda.synchronize()
        time3 = time.time()

        model.scheduler.step_post()

        torch.cuda.synchronize()
        time4 = time.time()

        print(f"step {step_index} infer time: {time3 - time2}")
        print(f"step {step_index} all time: {time4 - time1}")
        print("*" * 10)

    return model.scheduler.latents, model.scheduler.generator


def run_vae(latents, generator, args):
    images = vae_model.decode(latents, generator=generator, args=args)
    return images


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--model_cls", type=str, required=True, choices=["wan2.1", "hunyuan"], default="hunyuan")
    parser.add_argument("--task", type=str, choices=["t2v", "i2v"], default="t2v")
    parser.add_argument("--model_path", type=str, required=True)
    parser.add_argument("--config_path", type=str, default=None)
    parser.add_argument("--image_path", type=str, default=None)
Dongz's avatar
Dongz committed
209
    parser.add_argument("--save_video_path", type=str, default="./output_ligthx2v.mp4")
helloyongyang's avatar
helloyongyang committed
210
211
212
213
214
215
216
217
218
    parser.add_argument("--prompt", type=str, required=True)
    parser.add_argument("--infer_steps", type=int, required=True)
    parser.add_argument("--target_video_length", type=int, required=True)
    parser.add_argument("--target_width", type=int, required=True)
    parser.add_argument("--target_height", type=int, required=True)
    parser.add_argument("--attention_type", type=str, required=True)
    parser.add_argument("--sample_neg_prompt", type=str, default="")
    parser.add_argument("--sample_guide_scale", type=float, default=5.0)
    parser.add_argument("--sample_shift", type=float, default=5.0)
Dongz's avatar
Dongz committed
219
220
221
222
223
224
225
226
227
228
    parser.add_argument("--do_mm_calib", action="store_true")
    parser.add_argument("--cpu_offload", action="store_true")
    parser.add_argument("--feature_caching", choices=["NoCaching", "TaylorSeer", "Tea"], default="NoCaching")
    parser.add_argument("--mm_config", default=None)
    parser.add_argument("--seed", type=int, default=42)
    parser.add_argument("--parallel_attn", action="store_true")
    parser.add_argument("--parallel_vae", action="store_true")
    parser.add_argument("--max_area", action="store_true")
    parser.add_argument("--vae_stride", default=(4, 8, 8))
    parser.add_argument("--patch_size", default=(1, 2, 2))
helloyongyang's avatar
helloyongyang committed
229
230
231
232
233
234
    parser.add_argument("--teacache_thresh", type=float, default=0.26)
    parser.add_argument("--use_ret_steps", action="store_true", default=False)
    args = parser.parse_args()

    start_time = time.time()
    print(f"args: {args}")
Dongz's avatar
Dongz committed
235

helloyongyang's avatar
helloyongyang committed
236
237
238
    seed_all(args.seed)

    if args.parallel_attn:
Dongz's avatar
Dongz committed
239
        dist.init_process_group(backend="nccl")
helloyongyang's avatar
helloyongyang committed
240
241
242
243
244
245
246
247
248
249
250
251
252
253

    if args.mm_config:
        mm_config = json.loads(args.mm_config)
    else:
        mm_config = None

    model_config = {
        "task": args.task,
        "attention_type": args.attention_type,
        "sample_neg_prompt": args.sample_neg_prompt,
        "mm_config": mm_config,
        "do_mm_calib": args.do_mm_calib,
        "cpu_offload": args.cpu_offload,
        "feature_caching": args.feature_caching,
Xinchi Huang's avatar
Xinchi Huang committed
254
        "parallel_attn": args.parallel_attn,
Dongz's avatar
Dongz committed
255
        "parallel_vae": args.parallel_vae,
helloyongyang's avatar
helloyongyang committed
256
257
258
259
260
261
262
263
264
265
266
    }

    if args.config_path is not None:
        with open(args.config_path, "r") as f:
            config = json.load(f)
        model_config.update(config)

    print(f"model_config: {model_config}")

    model, text_encoders, vae_model, image_encoder = load_models(args, model_config)

Dongz's avatar
Dongz committed
267
    if args.task in ["i2v"]:
helloyongyang's avatar
helloyongyang committed
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
        image_encoder_output = run_image_encoder(args, image_encoder, vae_model)
    else:
        image_encoder_output = {"clip_encoder_out": None, "vae_encode_out": None}

    text_encoder_output = run_text_encoder(args, args.prompt, text_encoders, model_config)

    set_target_shape(args)
    scheduler = init_scheduler(args)

    model.set_scheduler(scheduler)

    gc.collect()
    torch.cuda.empty_cache()

    if args.cpu_offload:
        model.to_cuda()

    latents, generator = run_main_inference(args, model, text_encoder_output, image_encoder_output)

    if args.cpu_offload:
        model.to_cpu()
        gc.collect()
        torch.cuda.empty_cache()

    images = run_vae(latents, generator, args)

Xinchi Huang's avatar
Xinchi Huang committed
294
295
296
297
298
    if not args.parallel_attn or (args.parallel_attn and dist.get_rank() == 0):
        if args.model_cls == "wan2.1":
            cache_video(tensor=images, save_file=args.save_video_path, fps=16, nrow=1, normalize=True, value_range=(-1, 1))
        else:
            save_videos_grid(images, args.save_video_path, fps=24)
helloyongyang's avatar
helloyongyang committed
299
300

    end_time = time.time()
Xinchi Huang's avatar
Xinchi Huang committed
301
    print(f"Total time: {end_time - start_time}")