default_runner.py 16.2 KB
Newer Older
helloyongyang's avatar
helloyongyang committed
1
import gc
PengGao's avatar
PengGao committed
2

3
import requests
helloyongyang's avatar
helloyongyang committed
4
5
import torch
import torch.distributed as dist
helloyongyang's avatar
helloyongyang committed
6
import torchvision.transforms.functional as TF
PengGao's avatar
PengGao committed
7
8
9
from PIL import Image
from loguru import logger
from requests.exceptions import RequestException
PengGao's avatar
PengGao committed
10

yihuiwen's avatar
yihuiwen committed
11
from lightx2v.server.metrics import monitor_cli
helloyongyang's avatar
helloyongyang committed
12
from lightx2v.utils.envs import *
PengGao's avatar
PengGao committed
13
from lightx2v.utils.generate_task_id import generate_task_id
14
from lightx2v.utils.memory_profiler import peak_memory_decorator
15
from lightx2v.utils.profiler import *
helloyongyang's avatar
helloyongyang committed
16
from lightx2v.utils.utils import save_to_video, vae_to_comfyui_image
PengGao's avatar
PengGao committed
17

PengGao's avatar
PengGao committed
18
from .base_runner import BaseRunner
19
20


PengGao's avatar
PengGao committed
21
class DefaultRunner(BaseRunner):
helloyongyang's avatar
helloyongyang committed
22
    def __init__(self, config):
PengGao's avatar
PengGao committed
23
        super().__init__(config)
24
        self.has_prompt_enhancer = False
PengGao's avatar
PengGao committed
25
        self.progress_callback = None
26
        if self.config["task"] == "t2v" and self.config.get("sub_servers", {}).get("prompt_enhancer") is not None:
27
28
29
30
            self.has_prompt_enhancer = True
            if not self.check_sub_servers("prompt_enhancer"):
                self.has_prompt_enhancer = False
                logger.warning("No prompt enhancer server available, disable prompt enhancer.")
Zhuguanyu Wu's avatar
Zhuguanyu Wu committed
31
        if not self.has_prompt_enhancer:
32
            self.config["use_prompt_enhancer"] = False
Zhuguanyu Wu's avatar
Zhuguanyu Wu committed
33
        self.set_init_device()
Yang Yong(雍洋)'s avatar
Yang Yong(雍洋) committed
34
        self.init_scheduler()
35

36
    def init_modules(self):
gushiqiao's avatar
gushiqiao committed
37
        logger.info("Initializing runner modules...")
38
39
        if not self.config.get("lazy_load", False) and not self.config.get("unload_modules", False):
            self.load_model()
40
41
        elif self.config.get("lazy_load", False):
            assert self.config.get("cpu_offload", False)
Yang Yong(雍洋)'s avatar
Yang Yong(雍洋) committed
42
        self.model.set_scheduler(self.scheduler)  # set scheduler to model
43
44
        if self.config["task"] == "i2v":
            self.run_input_encoder = self._run_input_encoder_local_i2v
gushiqiao's avatar
gushiqiao committed
45
46
47
        elif self.config["task"] == "flf2v":
            self.run_input_encoder = self._run_input_encoder_local_flf2v
        elif self.config["task"] == "t2v":
48
            self.run_input_encoder = self._run_input_encoder_local_t2v
gushiqiao's avatar
gushiqiao committed
49
50
        elif self.config["task"] == "vace":
            self.run_input_encoder = self._run_input_encoder_local_vace
51
52
        elif self.config["task"] == "animate":
            self.run_input_encoder = self._run_input_encoder_local_animate
53
54
55
        elif self.config["task"] == "s2v":
            self.run_input_encoder = self._run_input_encoder_local_s2v
        self.config.lock()  # lock config to avoid modification
Yang Yong(雍洋)'s avatar
Yang Yong(雍洋) committed
56
57
58
        if self.config.get("compile", False):
            logger.info(f"[Compile] Compile all shapes: {self.config.get('compile_shapes', [])}")
            self.model.compile(self.config.get("compile_shapes", []))
59

60
    def set_init_device(self):
61
        if self.config["cpu_offload"]:
62
            self.init_device = torch.device("cpu")
63
        else:
64
            self.init_device = torch.device("cuda")
65

PengGao's avatar
PengGao committed
66
67
68
69
70
71
72
    def load_vfi_model(self):
        if self.config["video_frame_interpolation"].get("algo", None) == "rife":
            from lightx2v.models.vfi.rife.rife_comfyui_wrapper import RIFEWrapper

            logger.info("Loading RIFE model...")
            return RIFEWrapper(self.config["video_frame_interpolation"]["model_path"])
        else:
73
            raise ValueError(f"Unsupported VFI model: {self.config['video_frame_interpolation']['algo']}")
PengGao's avatar
PengGao committed
74

75
    @ProfilingContext4DebugL2("Load models")
76
    def load_model(self):
77
78
79
80
        self.model = self.load_transformer()
        self.text_encoders = self.load_text_encoder()
        self.image_encoder = self.load_image_encoder()
        self.vae_encoder, self.vae_decoder = self.load_vae()
PengGao's avatar
PengGao committed
81
        self.vfi_model = self.load_vfi_model() if "video_frame_interpolation" in self.config else None
Zhuguanyu Wu's avatar
Zhuguanyu Wu committed
82

83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
    def check_sub_servers(self, task_type):
        urls = self.config.get("sub_servers", {}).get(task_type, [])
        available_servers = []
        for url in urls:
            try:
                status_url = f"{url}/v1/local/{task_type}/generate/service_status"
                response = requests.get(status_url, timeout=2)
                if response.status_code == 200:
                    available_servers.append(url)
                else:
                    logger.warning(f"Service {url} returned status code {response.status_code}")

            except RequestException as e:
                logger.warning(f"Failed to connect to {url}: {str(e)}")
                continue
        logger.info(f"{task_type} available servers: {available_servers}")
        self.config["sub_servers"][task_type] = available_servers
        return len(available_servers) > 0

helloyongyang's avatar
helloyongyang committed
102
    def set_inputs(self, inputs):
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
        self.input_info.seed = inputs.get("seed", 42)
        self.input_info.prompt = inputs.get("prompt", "")
        if self.config["use_prompt_enhancer"]:
            self.input_info.prompt_enhanced = inputs.get("prompt_enhanced", "")
        self.input_info.negative_prompt = inputs.get("negative_prompt", "")
        if "image_path" in self.input_info.__dataclass_fields__:
            self.input_info.image_path = inputs.get("image_path", "")
        if "audio_path" in self.input_info.__dataclass_fields__:
            self.input_info.audio_path = inputs.get("audio_path", "")
        if "video_path" in self.input_info.__dataclass_fields__:
            self.input_info.video_path = inputs.get("video_path", "")
        self.input_info.save_result_path = inputs.get("save_result_path", "")

    def set_config(self, config_modify):
        logger.info(f"modify config: {config_modify}")
        with self.config.temporarily_unlocked():
            self.config.update(config_modify)
helloyongyang's avatar
helloyongyang committed
120

PengGao's avatar
PengGao committed
121
122
123
    def set_progress_callback(self, callback):
        self.progress_callback = callback

124
    @peak_memory_decorator
helloyongyang's avatar
helloyongyang committed
125
    def run_segment(self, total_steps=None):
helloyongyang's avatar
helloyongyang committed
126
127
        if total_steps is None:
            total_steps = self.model.scheduler.infer_steps
PengGao's avatar
PengGao committed
128
        for step_index in range(total_steps):
LiangLiu's avatar
LiangLiu committed
129
130
131
            # only for single segment, check stop signal every step
            if self.video_segment_num == 1:
                self.check_stop()
PengGao's avatar
PengGao committed
132
            logger.info(f"==> step_index: {step_index + 1} / {total_steps}")
133

134
            with ProfilingContext4DebugL1("step_pre"):
135
136
                self.model.scheduler.step_pre(step_index=step_index)

137
            with ProfilingContext4DebugL1("🚀 infer_main"):
138
139
                self.model.infer(self.inputs)

140
            with ProfilingContext4DebugL1("step_post"):
141
142
                self.model.scheduler.step_post()

PengGao's avatar
PengGao committed
143
            if self.progress_callback:
144
                self.progress_callback(((step_index + 1) / total_steps) * 100, 100)
PengGao's avatar
PengGao committed
145

helloyongyang's avatar
helloyongyang committed
146
        return self.model.scheduler.latents
147

helloyongyang's avatar
helloyongyang committed
148
    def run_step(self):
149
        self.inputs = self.run_input_encoder()
helloyongyang's avatar
helloyongyang committed
150
        self.run_main(total_steps=1)
helloyongyang's avatar
helloyongyang committed
151
152

    def end_run(self):
Zhuguanyu Wu's avatar
Zhuguanyu Wu committed
153
        self.model.scheduler.clear()
LiangLiu's avatar
LiangLiu committed
154
        del self.inputs
155
        self.input_info = None
gushiqiao's avatar
gushiqiao committed
156
157
158
159
160
161
        if self.config.get("lazy_load", False) or self.config.get("unload_modules", False):
            if hasattr(self.model.transformer_infer, "weights_stream_mgr"):
                self.model.transformer_infer.weights_stream_mgr.clear()
            if hasattr(self.model.transformer_weights, "clear"):
                self.model.transformer_weights.clear()
            self.model.pre_weight.clear()
162
            del self.model
Zhuguanyu Wu's avatar
Zhuguanyu Wu committed
163
        torch.cuda.empty_cache()
164
        gc.collect()
helloyongyang's avatar
helloyongyang committed
165

helloyongyang's avatar
helloyongyang committed
166
    def read_image_input(self, img_path):
LiangLiu's avatar
LiangLiu committed
167
168
169
170
        if isinstance(img_path, Image.Image):
            img_ori = img_path
        else:
            img_ori = Image.open(img_path).convert("RGB")
yihuiwen's avatar
yihuiwen committed
171
172
        if GET_RECORDER_MODE():
            width, height = img_ori.size
yihuiwen's avatar
yihuiwen committed
173
            monitor_cli.lightx2v_input_image_len.observe(width * height)
174
        img = TF.to_tensor(img_ori).sub_(0.5).div_(0.5).unsqueeze(0).cuda()
175
        self.input_info.original_size = img_ori.size
176
        return img, img_ori
helloyongyang's avatar
helloyongyang committed
177

178
    @ProfilingContext4DebugL2("Run Encoders")
PengGao's avatar
PengGao committed
179
    def _run_input_encoder_local_i2v(self):
180
        img, img_ori = self.read_image_input(self.input_info.image_path)
helloyongyang's avatar
helloyongyang committed
181
        clip_encoder_out = self.run_image_encoder(img) if self.config.get("use_image_encoder", True) else None
182
183
184
        vae_encode_out, latent_shape = self.run_vae_encoder(img_ori if self.vae_encoder_need_img_original else img)
        self.input_info.latent_shape = latent_shape  # Important: set latent_shape in input_info
        text_encoder_output = self.run_text_encoder(self.input_info)
185
186
        torch.cuda.empty_cache()
        gc.collect()
187
188
        return self.get_encoder_output_i2v(clip_encoder_out, vae_encode_out, text_encoder_output, img)

189
    @ProfilingContext4DebugL2("Run Encoders")
PengGao's avatar
PengGao committed
190
    def _run_input_encoder_local_t2v(self):
191
192
        self.input_info.latent_shape = self.get_latent_shape_with_target_hw(self.config["target_height"], self.config["target_width"])  # Important: set latent_shape in input_info
        text_encoder_output = self.run_text_encoder(self.input_info)
193
194
        torch.cuda.empty_cache()
        gc.collect()
195
196
197
198
        return {
            "text_encoder_output": text_encoder_output,
            "image_encoder_output": None,
        }
199

200
    @ProfilingContext4DebugL2("Run Encoders")
gushiqiao's avatar
gushiqiao committed
201
    def _run_input_encoder_local_flf2v(self):
202
203
        first_frame, _ = self.read_image_input(self.input_info.image_path)
        last_frame, _ = self.read_image_input(self.input_info.last_frame_path)
gushiqiao's avatar
gushiqiao committed
204
        clip_encoder_out = self.run_image_encoder(first_frame, last_frame) if self.config.get("use_image_encoder", True) else None
205
206
207
        vae_encode_out, latent_shape = self.run_vae_encoder(first_frame, last_frame)
        self.input_info.latent_shape = latent_shape  # Important: set latent_shape in input_info
        text_encoder_output = self.run_text_encoder(self.input_info)
gushiqiao's avatar
gushiqiao committed
208
209
210
211
        torch.cuda.empty_cache()
        gc.collect()
        return self.get_encoder_output_i2v(clip_encoder_out, vae_encode_out, text_encoder_output)

212
    @ProfilingContext4DebugL2("Run Encoders")
gushiqiao's avatar
gushiqiao committed
213
    def _run_input_encoder_local_vace(self):
214
215
216
        src_video = self.input_info.src_video
        src_mask = self.input_info.src_mask
        src_ref_images = self.input_info.src_ref_images
gushiqiao's avatar
gushiqiao committed
217
218
219
220
        src_video, src_mask, src_ref_images = self.prepare_source(
            [src_video],
            [src_mask],
            [None if src_ref_images is None else src_ref_images.split(",")],
221
            (self.config["target_width"], self.config["target_height"]),
gushiqiao's avatar
gushiqiao committed
222
223
224
        )
        self.src_ref_images = src_ref_images

225
226
227
        vae_encoder_out, latent_shape = self.run_vae_encoder(src_video, src_ref_images, src_mask)
        self.input_info.latent_shape = latent_shape  # Important: set latent_shape in input_info
        text_encoder_output = self.run_text_encoder(self.input_info)
gushiqiao's avatar
gushiqiao committed
228
229
230
231
        torch.cuda.empty_cache()
        gc.collect()
        return self.get_encoder_output_i2v(None, vae_encoder_out, text_encoder_output)

232
233
    @ProfilingContext4DebugL2("Run Text Encoder")
    def _run_input_encoder_local_animate(self):
234
        text_encoder_output = self.run_text_encoder(self.input_info)
235
236
237
238
        torch.cuda.empty_cache()
        gc.collect()
        return self.get_encoder_output_i2v(None, None, text_encoder_output, None)

239
240
241
    def _run_input_encoder_local_s2v(self):
        pass

helloyongyang's avatar
helloyongyang committed
242
    def init_run(self):
243
        self.gen_video_final = None
helloyongyang's avatar
helloyongyang committed
244
        self.get_video_segment_num()
gushiqiao's avatar
gushiqiao committed
245
        if self.config.get("lazy_load", False) or self.config.get("unload_modules", False):
246
            self.model = self.load_transformer()
247
248
249

        self.model.scheduler.prepare(seed=self.input_info.seed, latent_shape=self.input_info.latent_shape, image_encoder_output=self.inputs["image_encoder_output"])
        if self.config.get("model_cls") == "wan2.2" and self.config["task"] in ["i2v", "s2v"]:
250
            self.inputs["image_encoder_output"]["vae_encoder_out"] = None
helloyongyang's avatar
helloyongyang committed
251

252
    @ProfilingContext4DebugL2("Run DiT")
helloyongyang's avatar
helloyongyang committed
253
254
    def run_main(self, total_steps=None):
        self.init_run()
Yang Yong(雍洋)'s avatar
Yang Yong(雍洋) committed
255
        if self.config.get("compile", False):
256
            self.model.select_graph_for_compile(self.input_info)
helloyongyang's avatar
helloyongyang committed
257
        for segment_idx in range(self.video_segment_num):
258
            logger.info(f"🔄 start segment {segment_idx + 1}/{self.video_segment_num}")
yihuiwen's avatar
yihuiwen committed
259
260
261
262
263
264
            with ProfilingContext4DebugL1(
                f"segment end2end {segment_idx + 1}/{self.video_segment_num}",
                recorder_mode=GET_RECORDER_MODE(),
                metrics_func=monitor_cli.lightx2v_run_pre_step_dit_duration,
                metrics_labels=[segment_idx + 1, self.video_segment_num],
            ):
LiangLiu's avatar
LiangLiu committed
265
                self.check_stop()
Yang Yong(雍洋)'s avatar
Yang Yong(雍洋) committed
266
267
268
                # 1. default do nothing
                self.init_run_segment(segment_idx)
                # 2. main inference loop
helloyongyang's avatar
helloyongyang committed
269
                latents = self.run_segment(total_steps=total_steps)
Yang Yong(雍洋)'s avatar
Yang Yong(雍洋) committed
270
271
272
                # 3. vae decoder
                self.gen_video = self.run_vae_decoder(latents)
                # 4. default do nothing
273
                self.end_run_segment(segment_idx)
274
        gen_video_final = self.process_images_after_vae_decoder()
275
        self.end_run()
276
        return {"video": gen_video_final}
277

yihuiwen's avatar
yihuiwen committed
278
    @ProfilingContext4DebugL1("Run VAE Decoder", recorder_mode=GET_RECORDER_MODE(), metrics_func=monitor_cli.lightx2v_run_vae_decode_duration, metrics_labels=["DefaultRunner"])
gushiqiao's avatar
gushiqiao committed
279
    def run_vae_decoder(self, latents):
gushiqiao's avatar
gushiqiao committed
280
        if self.config.get("lazy_load", False) or self.config.get("unload_modules", False):
281
            self.vae_decoder = self.load_vae_decoder()
282
        images = self.vae_decoder.decode(latents.to(GET_DTYPE()))
gushiqiao's avatar
gushiqiao committed
283
        if self.config.get("lazy_load", False) or self.config.get("unload_modules", False):
gushiqiao's avatar
gushiqiao committed
284
            del self.vae_decoder
285
286
            torch.cuda.empty_cache()
            gc.collect()
helloyongyang's avatar
helloyongyang committed
287
288
        return images

289
290
291
292
293
    def post_prompt_enhancer(self):
        while True:
            for url in self.config["sub_servers"]["prompt_enhancer"]:
                response = requests.get(f"{url}/v1/local/prompt_enhancer/generate/service_status").json()
                if response["service_status"] == "idle":
294
295
296
297
298
299
300
                    response = requests.post(
                        f"{url}/v1/local/prompt_enhancer/generate",
                        json={
                            "task_id": generate_task_id(),
                            "prompt": self.config["prompt"],
                        },
                    )
301
302
303
304
                    enhanced_prompt = response.json()["output"]
                    logger.info(f"Enhanced prompt: {enhanced_prompt}")
                    return enhanced_prompt

305
306
    def process_images_after_vae_decoder(self):
        self.gen_video_final = vae_to_comfyui_image(self.gen_video_final)
PengGao's avatar
PengGao committed
307
308
309
310
311

        if "video_frame_interpolation" in self.config:
            assert self.vfi_model is not None and self.config["video_frame_interpolation"].get("target_fps", None) is not None
            target_fps = self.config["video_frame_interpolation"]["target_fps"]
            logger.info(f"Interpolating frames from {self.config.get('fps', 16)} to {target_fps}")
312
313
            self.gen_video_final = self.vfi_model.interpolate_frames(
                self.gen_video_final,
PengGao's avatar
PengGao committed
314
315
316
                source_fps=self.config.get("fps", 16),
                target_fps=target_fps,
            )
PengGao's avatar
PengGao committed
317

318
319
320
        if self.input_info.return_result_tensor:
            return {"video": self.gen_video_final}
        elif self.input_info.save_result_path is not None:
PengGao's avatar
PengGao committed
321
322
323
324
            if "video_frame_interpolation" in self.config and self.config["video_frame_interpolation"].get("target_fps"):
                fps = self.config["video_frame_interpolation"]["target_fps"]
            else:
                fps = self.config.get("fps", 16)
helloyongyang's avatar
helloyongyang committed
325

326
            if not dist.is_initialized() or dist.get_rank() == 0:
helloyongyang's avatar
helloyongyang committed
327
                logger.info(f"🎬 Start to save video 🎬")
328

329
330
331
332
                save_to_video(self.gen_video_final, self.input_info.save_result_path, fps=fps, method="ffmpeg")
                logger.info(f"✅ Video saved successfully to: {self.input_info.save_result_path} ✅")
            return {"video": None}

yihuiwen's avatar
yihuiwen committed
333
    @ProfilingContext4DebugL1("RUN pipeline", recorder_mode=GET_RECORDER_MODE(), metrics_func=monitor_cli.lightx2v_worker_request_duration, metrics_labels=["DefaultRunner"])
334
    def run_pipeline(self, input_info):
yihuiwen's avatar
yihuiwen committed
335
336
        if GET_RECORDER_MODE():
            monitor_cli.lightx2v_worker_request_count.inc()
337
        self.input_info = input_info
PengGao's avatar
PengGao committed
338

helloyongyang's avatar
helloyongyang committed
339
        if self.config["use_prompt_enhancer"]:
340
            self.input_info.prompt_enhanced = self.post_prompt_enhancer()
helloyongyang's avatar
helloyongyang committed
341
342
343

        self.inputs = self.run_input_encoder()

344
        gen_video_final = self.run_main()
PengGao's avatar
PengGao committed
345

yihuiwen's avatar
yihuiwen committed
346
347
        if GET_RECORDER_MODE():
            monitor_cli.lightx2v_worker_request_success.inc()
348
        return gen_video_final