ggml_tensor.py 19.1 KB
Newer Older
yihuiwen's avatar
yihuiwen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
from typing import Optional, Tuple, Union

import gguf
import numpy as np
import torch
from loguru import logger

TORCH_COMPATIBLE_QTYPES = (None, gguf.GGMLQuantizationType.F32, gguf.GGMLQuantizationType.F16, gguf.GGMLQuantizationType.BF16)


class GGMLTensor:
    def __init__(
        self,
        data: Union[torch.Tensor, np.ndarray, None] = None,
        orig_shape: Tuple[int, ...] = None,
        dtype: torch.dtype = None,
        gguf_type: gguf.GGMLQuantizationType = None,
        requires_grad: bool = False,
        aligned: bool = True,
        pin_memory: bool = False,
        preallocated: bool = False,
    ):
        super().__init__()

        assert orig_shape is not None
        assert gguf_type is not None

        if isinstance(data, np.ndarray):
            import warnings

            with warnings.catch_warnings():
                warnings.filterwarnings("ignore", message="The given NumPy array is not writable")
                torch_data = torch.from_numpy(data)
        else:
            torch_data = data

            if dtype is not None and torch_data.dtype != dtype:
                torch_data = torch_data.to(dtype)

        self.data = torch_data

        self.gguf_type = gguf_type
        self._orig_shape = orig_shape
        self._aligned = aligned
        self._pinned_memory = pin_memory
        self._requires_grad = requires_grad
        self._preallocated = preallocated

        self._quantized = self._is_quantized_type(gguf_type)
        self._q_type = self._get_quant_type_str(gguf_type)

        if aligned:
            self._make_aligned()
        if pin_memory:
            self._pin_memory()

    def _is_quantized_type(self, gguf_type: gguf.GGMLQuantizationType) -> bool:
        return gguf_type not in TORCH_COMPATIBLE_QTYPES

    def _get_quant_type_str(self, gguf_type: gguf.GGMLQuantizationType) -> str:
        type_mapping = {
            gguf.GGMLQuantizationType.F32: "ggml_f32",
            gguf.GGMLQuantizationType.F16: "ggml_f16",
            gguf.GGMLQuantizationType.Q4_0: "ggml_q4_0",
            gguf.GGMLQuantizationType.Q4_1: "ggml_q4_1",
            gguf.GGMLQuantizationType.Q5_0: "ggml_q5_0",
            gguf.GGMLQuantizationType.Q5_1: "ggml_q5_1",
            gguf.GGMLQuantizationType.Q8_0: "ggml_q8_0",
            gguf.GGMLQuantizationType.Q8_1: "ggml_q8_1",
            gguf.GGMLQuantizationType.Q2_K: "ggml_q2_k",
            gguf.GGMLQuantizationType.Q3_K: "ggml_q3_k",
            gguf.GGMLQuantizationType.Q4_K: "ggml_q4_k",
            gguf.GGMLQuantizationType.Q5_K: "ggml_q5_k",
            gguf.GGMLQuantizationType.Q6_K: "ggml_q6_k",
            gguf.GGMLQuantizationType.Q8_K: "ggml_q8_k",
        }
        return type_mapping.get(gguf_type, "unknown")

    @classmethod
    def empty_pinned(
        cls, shape: Tuple[int, ...], orig_shape: Tuple[int, ...] = None, dtype: torch.dtype = torch.float32, gguf_type: gguf.GGMLQuantizationType = None, aligned: bool = True
    ) -> "GGMLTensor":
        torch_data = torch.empty(shape, pin_memory=True, dtype=dtype)
        return cls(data=torch_data, dtype=dtype, orig_shape=orig_shape, gguf_type=gguf_type, pin_memory=True, aligned=aligned, preallocated=True)

    @classmethod
    def empty_aligned(
        cls, shape: Tuple[int, ...], orig_shape: Tuple[int, ...] = None, dtype: torch.dtype = torch.float32, gguf_type: gguf.GGMLQuantizationType = None, pin_memory: bool = False
    ) -> "GGMLTensor":
        return cls(dtype=dtype, orig_shape=orig_shape, gguf_type=gguf_type, pin_memory=pin_memory, aligned=True, preallocated=True)

    def copy_from(self, source: Union[torch.Tensor, "GGMLTensor"], transpose: bool = False, non_blocking: bool = False) -> "GGMLTensor":
        if not self._preallocated:
            raise RuntimeError("copy_from can only be used with preallocated tensors")

        if transpose:
            source_data = source.data.t().contiguous()
        else:
            source_data = source.data.contiguous()

        if self.shape != source_data.shape:
            raise ValueError(f"Shape mismatch: target {self.shape} vs source {source_data.shape}")

        self.data.copy_(source_data)

        return self

    def copy_(self, target: Union[torch.Tensor, "GGMLTensor"], transpose: bool = False, non_blocking: bool = False) -> "GGMLTensor":
        source_data = self.data
        if transpose:
            source_data = self.t().contiguous()

        if isinstance(target, GGMLTensor):
            target.copy_from(source_data, non_blocking=non_blocking)
        else:
            target.copy_(source_data)

        return self

    def t(self):
        self.data = self.data.t()
        return self

    def _make_aligned(self, alignment: int = 32):
        if not self.data.is_contiguous():
            self.data = self.data.contiguous().data

        ptr = self.data.data_ptr()
        if ptr % alignment == 0:
            return

        if self._pinned_memory:
            aligned_data = torch.empty(self.data.shape, dtype=self.data.dtype, device=self.data.device, pin_memory=True)
        else:
            aligned_data = torch.empty(self.data.shape, dtype=self.data.dtype, device=self.data.device)

        aligned_data.copy_(self.data)
        self.data = aligned_data.data

    def _pin_memory(self) -> "GGMLTensor":
        if self._pinned_memory or self.device.type != "cpu":
            return self

        pinned_data = self.data.pin_memory()
        self.data = pinned_data.data
        self._pinned_memory = True
        return self

    def to_torch(self) -> torch.Tensor:
        return torch.as_tensor(self.data)

    @property
    def shape(self):
        return self.data.shape

    @property
    def dtype(self):
        return self.data.dtype

    @property
    def device(self):
        return self.data.device

    @property
    def tensor_type(self) -> gguf.GGMLQuantizationType:
        return self.gguf_type

    @property
    def quant_type(self) -> str:
        return self._q_type

    @property
    def is_quantized(self) -> bool:
        return self._quantized

    @property
    def orig_shape(self) -> Tuple[int, ...]:
        return self._orig_shape

    @property
    def blocksize(self) -> Optional[int]:
        _blocksize, _ = gguf.GGML_QUANT_SIZES[self.qtype]
        return _blocksize

    @property
    def is_pinned(self) -> bool:
        return self._pinned_memory

    def memory_footprint(self) -> int:
        if self._quantized:
            return self.data.numel() * self.element_size()
        else:
            return self.data.numel() * self.element_size()

    def __repr__(self) -> str:
        return f"GGMLTensor(shape={self.data.shape}, orig_shape={self.orig_shape}, dtype={self.data.dtype}, quantized={self.is_quantized}, quant_type='{self.quant_type}', pinned={self.is_pinned})"

    def cuda(self, device: Optional[Union[int, torch.device]] = None, non_blocking: bool = False) -> "GGMLTensor":
        if device is None:
            self.data = self.data.cuda(non_blocking=non_blocking)
        else:
            self.data = self.data.cuda(device=device, non_blocking=non_blocking)
        return self

    def cpu(self, pin_memory: bool = False) -> "GGMLTensor":
        self.data = self.data.cpu()
        return self

    def to(self, *args, **kwargs) -> "GGMLTensor":
        self.data = self.data.to(*args, **kwargs)
        return self


def load_gguf_sd_ckpt(gguf_path, return_arch=False, to_device: Optional[Union[int, torch.device]] = None):
    import warnings

    logger.info(f"Loading gguf-quant dit model from {gguf_path}")

    reader = gguf.GGUFReader(gguf_path)
    state_dict = {}
    for tensor in reader.tensors:
        tensor_name = tensor.name

        with warnings.catch_warnings():
            warnings.filterwarnings("ignore", message="The given NumPy array is not writable")
            torch_tensor = torch.from_numpy(tensor.data)  # mmap

        shape = get_orig_shape(reader, tensor_name)
        if shape is None:
            shape = torch.Size(tuple(int(v) for v in reversed(tensor.shape)))

        if tensor.tensor_type in TORCH_COMPATIBLE_QTYPES:
            state_dict[tensor.name] = torch_tensor.to(to_device)
        else:
            state_dict[tensor.name] = GGMLTensor(
                data=torch_tensor,
                gguf_type=tensor.tensor_type,
                orig_shape=shape,
                aligned=True,
                pin_memory=False,
            ).to(to_device)

    if return_arch:
        arch = get_model_architecture(reader)
        return state_dict, arch

    return state_dict


def get_orig_shape(reader, tensor_name: str) -> Optional[Tuple[int, ...]]:
    # TODO 这里正式上线的时候,需要更换
    field_key = f"comfy.gguf.orig_shape.{tensor_name}"
    field = reader.get_field(field_key)
    if field is None:
        return None
    # Has original shape metadata, so we try to decode it.
    if len(field.types) != 2 or field.types[0] != gguf.GGUFValueType.ARRAY or field.types[1] != gguf.GGUFValueType.INT32:
        raise TypeError(f"Bad original shape metadata for {field_key}: Expected ARRAY of INT32, got {field.types}")
    return torch.Size(tuple(int(field.parts[part_idx][0]) for part_idx in field.data))


def get_field(reader, field_name, field_type):
    field = reader.get_field(field_name)
    if field is None:
        return None
    elif isinstance(field_type, str):
        # extra check here as this is used for checking arch string
        if len(field.types) != 1 or field.types[0] != gguf.GGUFValueType.STRING:
            raise TypeError(f"Bad type for GGUF {field_name} key: expected string, got {field.types!r}")
        return str(field.parts[field.data[-1]], encoding="utf-8")
    elif field_type in [int, float, bool]:
        return field_type(field.parts[field.data[-1]])
    else:
        raise TypeError(f"Unknown field type {field_type}")


def get_model_architecture(reader) -> str:
    arch_str = get_field(reader, "general.architecture", str)
    return arch_str


def dequantize_tensor(tensor, dtype=None):
    qtype = getattr(tensor, "gguf_type", None)
    oshape = getattr(tensor, "orig_shape", tensor.data.shape)

    if qtype in TORCH_COMPATIBLE_QTYPES:
        return tensor.to(dtype)
    elif qtype in dequantize_functions:
        return dequantize(tensor.to_torch().data, qtype, oshape, dtype=dtype).to(dtype)
    else:
        # this is incredibly slow
        tqdm.write(f"Falling back to numpy dequant for qtype: {qtype}")
        new = gguf.quants.dequantize(tensor.cpu().numpy(), qtype)
        return torch.from_numpy(new).to(tensor.device, dtype=dtype)


def dequantize(data, qtype, oshape, dtype=None):
    block_size, type_size = gguf.GGML_QUANT_SIZES[qtype]
    dequantize_blocks = dequantize_functions[qtype]

    rows = data.reshape((-1, data.shape[-1])).view(torch.uint8)

    n_blocks = rows.numel() // type_size
    blocks = rows.reshape((n_blocks, type_size))
    blocks = dequantize_blocks(blocks, block_size, type_size, dtype)
    return blocks.reshape(oshape)


def to_uint32(x):
    x = x.view(torch.uint8).to(torch.int32)
    return (x[:, 0] | x[:, 1] << 8 | x[:, 2] << 16 | x[:, 3] << 24).unsqueeze(1)


def split_block_dims(blocks, *args):
    n_max = blocks.shape[1]
    dims = list(args) + [n_max - sum(args)]
    return torch.split(blocks, dims, dim=1)


def dequantize_blocks_BF16(blocks, block_size, type_size, dtype=None):
    return (blocks.view(torch.int16).to(torch.int32) << 16).view(torch.float32)


def dequantize_blocks_Q8_0(blocks, block_size, type_size, dtype=None):
    d, x = split_block_dims(blocks, 2)
    d = d.view(torch.float16).to(dtype)
    x = x.view(torch.int8)
    return d * x


def dequantize_blocks_Q5_1(blocks, block_size, type_size, dtype=None):
    n_blocks = blocks.shape[0]

    d, m, qh, qs = split_block_dims(blocks, 2, 2, 4)
    d = d.view(torch.float16).to(dtype)
    m = m.view(torch.float16).to(dtype)
    qh = to_uint32(qh)

    qh = qh.reshape((n_blocks, 1)) >> torch.arange(32, device=d.device, dtype=torch.int32).reshape(1, 32)
    ql = qs.reshape((n_blocks, -1, 1, block_size // 2)) >> torch.tensor([0, 4], device=d.device, dtype=torch.uint8).reshape(1, 1, 2, 1)
    qh = (qh & 1).to(torch.uint8)
    ql = (ql & 0x0F).reshape((n_blocks, -1))

    qs = ql | (qh << 4)
    return (d * qs) + m


def dequantize_blocks_Q5_0(blocks, block_size, type_size, dtype=None):
    n_blocks = blocks.shape[0]

    d, qh, qs = split_block_dims(blocks, 2, 4)
    d = d.view(torch.float16).to(dtype)
    qh = to_uint32(qh)

    qh = qh.reshape(n_blocks, 1) >> torch.arange(32, device=d.device, dtype=torch.int32).reshape(1, 32)
    ql = qs.reshape(n_blocks, -1, 1, block_size // 2) >> torch.tensor([0, 4], device=d.device, dtype=torch.uint8).reshape(1, 1, 2, 1)

    qh = (qh & 1).to(torch.uint8)
    ql = (ql & 0x0F).reshape(n_blocks, -1)

    qs = (ql | (qh << 4)).to(torch.int8) - 16
    return d * qs


def dequantize_blocks_Q4_1(blocks, block_size, type_size, dtype=None):
    n_blocks = blocks.shape[0]

    d, m, qs = split_block_dims(blocks, 2, 2)
    d = d.view(torch.float16).to(dtype)
    m = m.view(torch.float16).to(dtype)

    qs = qs.reshape((n_blocks, -1, 1, block_size // 2)) >> torch.tensor([0, 4], device=d.device, dtype=torch.uint8).reshape(1, 1, 2, 1)
    qs = (qs & 0x0F).reshape(n_blocks, -1)

    return (d * qs) + m


def dequantize_blocks_Q4_0(blocks, block_size, type_size, dtype=None):
    n_blocks = blocks.shape[0]

    d, qs = split_block_dims(blocks, 2)
    d = d.view(torch.float16).to(dtype)

    qs = qs.reshape((n_blocks, -1, 1, block_size // 2)) >> torch.tensor([0, 4], device=d.device, dtype=torch.uint8).reshape((1, 1, 2, 1))
    qs = (qs & 0x0F).reshape((n_blocks, -1)).to(torch.int8) - 8
    return d * qs


# K Quants #
QK_K = 256
K_SCALE_SIZE = 12


def get_scale_min(scales):
    n_blocks = scales.shape[0]
    scales = scales.view(torch.uint8)
    scales = scales.reshape((n_blocks, 3, 4))

    d, m, m_d = torch.split(scales, scales.shape[-2] // 3, dim=-2)

    sc = torch.cat([d & 0x3F, (m_d & 0x0F) | ((d >> 2) & 0x30)], dim=-1)
    min = torch.cat([m & 0x3F, (m_d >> 4) | ((m >> 2) & 0x30)], dim=-1)

    return (sc.reshape((n_blocks, 8)), min.reshape((n_blocks, 8)))


def dequantize_blocks_Q6_K(blocks, block_size, type_size, dtype=None):
    n_blocks = blocks.shape[0]

    (
        ql,
        qh,
        scales,
        d,
    ) = split_block_dims(blocks, QK_K // 2, QK_K // 4, QK_K // 16)

    scales = scales.view(torch.int8).to(dtype)
    d = d.view(torch.float16).to(dtype)
    d = (d * scales).reshape((n_blocks, QK_K // 16, 1))

    ql = ql.reshape((n_blocks, -1, 1, 64)) >> torch.tensor([0, 4], device=d.device, dtype=torch.uint8).reshape((1, 1, 2, 1))
    ql = (ql & 0x0F).reshape((n_blocks, -1, 32))
    qh = qh.reshape((n_blocks, -1, 1, 32)) >> torch.tensor([0, 2, 4, 6], device=d.device, dtype=torch.uint8).reshape((1, 1, 4, 1))
    qh = (qh & 0x03).reshape((n_blocks, -1, 32))
    q = (ql | (qh << 4)).to(torch.int8) - 32
    q = q.reshape((n_blocks, QK_K // 16, -1))

    return (d * q).reshape((n_blocks, QK_K))


def dequantize_blocks_Q5_K(blocks, block_size, type_size, dtype=None):
    n_blocks = blocks.shape[0]

    d, dmin, scales, qh, qs = split_block_dims(blocks, 2, 2, K_SCALE_SIZE, QK_K // 8)

    d = d.view(torch.float16).to(dtype)
    dmin = dmin.view(torch.float16).to(dtype)

    sc, m = get_scale_min(scales)

    d = (d * sc).reshape((n_blocks, -1, 1))
    dm = (dmin * m).reshape((n_blocks, -1, 1))

    ql = qs.reshape((n_blocks, -1, 1, 32)) >> torch.tensor([0, 4], device=d.device, dtype=torch.uint8).reshape((1, 1, 2, 1))
    qh = qh.reshape((n_blocks, -1, 1, 32)) >> torch.tensor([i for i in range(8)], device=d.device, dtype=torch.uint8).reshape((1, 1, 8, 1))
    ql = (ql & 0x0F).reshape((n_blocks, -1, 32))
    qh = (qh & 0x01).reshape((n_blocks, -1, 32))
    q = ql | (qh << 4)

    return (d * q - dm).reshape((n_blocks, QK_K))


def dequantize_blocks_Q4_K(blocks, block_size, type_size, dtype=None):
    n_blocks = blocks.shape[0]

    d, dmin, scales, qs = split_block_dims(blocks, 2, 2, K_SCALE_SIZE)
    d = d.view(torch.float16).to(dtype)
    dmin = dmin.view(torch.float16).to(dtype)

    sc, m = get_scale_min(scales)

    d = (d * sc).reshape((n_blocks, -1, 1))
    dm = (dmin * m).reshape((n_blocks, -1, 1))

    qs = qs.reshape((n_blocks, -1, 1, 32)) >> torch.tensor([0, 4], device=d.device, dtype=torch.uint8).reshape((1, 1, 2, 1))
    qs = (qs & 0x0F).reshape((n_blocks, -1, 32))

    return (d * qs - dm).reshape((n_blocks, QK_K))


def dequantize_blocks_Q3_K(blocks, block_size, type_size, dtype=None):
    n_blocks = blocks.shape[0]

    hmask, qs, scales, d = split_block_dims(blocks, QK_K // 8, QK_K // 4, 12)
    d = d.view(torch.float16).to(dtype)

    lscales, hscales = scales[:, :8], scales[:, 8:]
    lscales = lscales.reshape((n_blocks, 1, 8)) >> torch.tensor([0, 4], device=d.device, dtype=torch.uint8).reshape((1, 2, 1))
    lscales = lscales.reshape((n_blocks, 16))
    hscales = hscales.reshape((n_blocks, 1, 4)) >> torch.tensor([0, 2, 4, 6], device=d.device, dtype=torch.uint8).reshape((1, 4, 1))
    hscales = hscales.reshape((n_blocks, 16))
    scales = (lscales & 0x0F) | ((hscales & 0x03) << 4)
    scales = scales.to(torch.int8) - 32

    dl = (d * scales).reshape((n_blocks, 16, 1))

    ql = qs.reshape((n_blocks, -1, 1, 32)) >> torch.tensor([0, 2, 4, 6], device=d.device, dtype=torch.uint8).reshape((1, 1, 4, 1))
    qh = hmask.reshape(n_blocks, -1, 1, 32) >> torch.tensor([i for i in range(8)], device=d.device, dtype=torch.uint8).reshape((1, 1, 8, 1))
    ql = ql.reshape((n_blocks, 16, QK_K // 16)) & 3
    qh = (qh.reshape((n_blocks, 16, QK_K // 16)) & 1) ^ 1
    q = ql.to(torch.int8) - (qh << 2).to(torch.int8)

    return (dl * q).reshape((n_blocks, QK_K))


def dequantize_blocks_Q2_K(blocks, block_size, type_size, dtype=None):
    n_blocks = blocks.shape[0]

    scales, qs, d, dmin = split_block_dims(blocks, QK_K // 16, QK_K // 4, 2)
    d = d.view(torch.float16).to(dtype)
    dmin = dmin.view(torch.float16).to(dtype)

    # (n_blocks, 16, 1)
    dl = (d * (scales & 0xF)).reshape((n_blocks, QK_K // 16, 1))
    ml = (dmin * (scales >> 4)).reshape((n_blocks, QK_K // 16, 1))

    shift = torch.tensor([0, 2, 4, 6], device=d.device, dtype=torch.uint8).reshape((1, 1, 4, 1))

    qs = (qs.reshape((n_blocks, -1, 1, 32)) >> shift) & 3
    qs = qs.reshape((n_blocks, QK_K // 16, 16))
    qs = dl * qs - ml

    return qs.reshape((n_blocks, -1))


dequantize_functions = {
    gguf.GGMLQuantizationType.BF16: dequantize_blocks_BF16,
    gguf.GGMLQuantizationType.Q8_0: dequantize_blocks_Q8_0,
    gguf.GGMLQuantizationType.Q5_1: dequantize_blocks_Q5_1,
    gguf.GGMLQuantizationType.Q5_0: dequantize_blocks_Q5_0,
    gguf.GGMLQuantizationType.Q4_1: dequantize_blocks_Q4_1,
    gguf.GGMLQuantizationType.Q4_0: dequantize_blocks_Q4_0,
    gguf.GGMLQuantizationType.Q6_K: dequantize_blocks_Q6_K,
    gguf.GGMLQuantizationType.Q5_K: dequantize_blocks_Q5_K,
    gguf.GGMLQuantizationType.Q4_K: dequantize_blocks_Q4_K,
    gguf.GGMLQuantizationType.Q3_K: dequantize_blocks_Q3_K,
    gguf.GGMLQuantizationType.Q2_K: dequantize_blocks_Q2_K,
}


if __name__ == "__main__":
    sd = load_gguf_sd_ckpt("/home/SENSETIME/yihuiwen/yihuiwen/workspace/models/city96/Wan2.1-I2V-14B-720P-gguf/wan2.1-i2v-14b-720p-Q4_K_S.gguf", return_arch=False)

    for k, s in sd.items():
        print(k)
        if isinstance(s, GGMLTensor):
            dequantize_tensor(s, torch.float32)