wan_audio_runner.py 24.6 KB
Newer Older
wangshankun's avatar
wangshankun committed
1
2
3
4
5
6
7
8
9
10
11
12
13
import os
import gc
import numpy as np
import torch
import torchvision.transforms.functional as TF
from PIL import Image
from lightx2v.utils.registry_factory import RUNNER_REGISTER
from lightx2v.models.runners.wan.wan_runner import WanRunner
from lightx2v.models.runners.default_runner import DefaultRunner
from lightx2v.models.schedulers.wan.scheduler import WanScheduler
from lightx2v.models.networks.wan.model import WanModel
from lightx2v.utils.profiler import ProfilingContext4Debug, ProfilingContext
from lightx2v.models.input_encoders.hf.t5.model import T5EncoderModel
wangshankun's avatar
wangshankun committed
14
from lightx2v.models.input_encoders.hf.xlm_roberta.model import CLIPModel, WanVideoIPHandler
wangshankun's avatar
wangshankun committed
15
16
17
18
19
20
from lightx2v.models.networks.wan.audio_model import WanAudioModel
from lightx2v.models.networks.wan.lora_adapter import WanLoraWrapper
from lightx2v.models.video_encoders.hf.wan.vae import WanVAE

from lightx2v.models.networks.wan.audio_adapter import AudioAdapter, AudioAdapterPipe, rank0_load_state_dict_from_path

wangshankun's avatar
wangshankun committed
21
from lightx2v.models.schedulers.wan.step_distill.scheduler import WanStepDistillScheduler
wangshankun's avatar
wangshankun committed
22
from lightx2v.models.schedulers.wan.audio.scheduler import EulerSchedulerTimestepFix
wangshankun's avatar
wangshankun committed
23

wangshankun's avatar
wangshankun committed
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
from loguru import logger
import torch.distributed as dist
from einops import rearrange
import torchaudio as ta
from transformers import AutoFeatureExtractor

from torchvision.datasets.folder import IMG_EXTENSIONS
from torchvision.transforms import InterpolationMode
from torchvision.transforms.functional import resize

import subprocess
import warnings
from typing import Optional, Tuple, Union


wangshankun's avatar
wangshankun committed
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
def add_mask_to_frames(
    frames: np.ndarray,
    mask_rate: float = 0.1,
    rnd_state: np.random.RandomState = None,
) -> np.ndarray:
    if mask_rate is None:
        return frames

    if rnd_state is None:
        rnd_state = np.random.RandomState()

    h, w = frames.shape[-2:]
    mask = rnd_state.rand(h, w) > mask_rate
    frames = frames * mask
    return frames


def add_noise_to_frames(
    frames: np.ndarray,
    noise_mean: float = -3.0,
    noise_std: float = 0.5,
    rnd_state: np.random.RandomState = None,
) -> np.ndarray:
    if noise_mean is None or noise_std is None:
        return frames

    if rnd_state is None:
        rnd_state = np.random.RandomState()

    shape = frames.shape
    bs = 1 if len(shape) == 4 else shape[0]
    sigma = rnd_state.normal(loc=noise_mean, scale=noise_std, size=(bs,))
    sigma = np.exp(sigma)
    sigma = np.expand_dims(sigma, axis=tuple(range(1, len(shape))))
    noise = rnd_state.randn(*shape) * sigma
    frames = frames + noise
    return frames


wangshankun's avatar
wangshankun committed
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
def get_crop_bbox(ori_h, ori_w, tgt_h, tgt_w):
    tgt_ar = tgt_h / tgt_w
    ori_ar = ori_h / ori_w
    if abs(ori_ar - tgt_ar) < 0.01:
        return 0, ori_h, 0, ori_w
    if ori_ar > tgt_ar:
        crop_h = int(tgt_ar * ori_w)
        y0 = (ori_h - crop_h) // 2
        y1 = y0 + crop_h
        return y0, y1, 0, ori_w
    else:
        crop_w = int(ori_h / tgt_ar)
        x0 = (ori_w - crop_w) // 2
        x1 = x0 + crop_w
        return 0, ori_h, x0, x1


def isotropic_crop_resize(frames: torch.Tensor, size: tuple):
    """
    frames: (T, C, H, W)
    size: (H, W)
    """
    ori_h, ori_w = frames.shape[2:]
    h, w = size
    y0, y1, x0, x1 = get_crop_bbox(ori_h, ori_w, h, w)
    cropped_frames = frames[:, :, y0:y1, x0:x1]
    resized_frames = resize(cropped_frames, size, InterpolationMode.BICUBIC, antialias=True)
    return resized_frames


def adaptive_resize(img):
    bucket_config = {
        0.667: (np.array([[480, 832], [544, 960], [720, 1280]], dtype=np.int64), np.array([0.2, 0.5, 0.3])),
        1.0: (np.array([[480, 480], [576, 576], [704, 704], [960, 960]], dtype=np.int64), np.array([0.1, 0.1, 0.5, 0.3])),
        1.5: (np.array([[480, 832], [544, 960], [720, 1280]], dtype=np.int64)[:, ::-1], np.array([0.2, 0.5, 0.3])),
    }
    ori_height = img.shape[-2]
    ori_weight = img.shape[-1]
    ori_ratio = ori_height / ori_weight
    aspect_ratios = np.array(np.array(list(bucket_config.keys())))
    closet_aspect_idx = np.argmin(np.abs(aspect_ratios - ori_ratio))
    closet_ratio = aspect_ratios[closet_aspect_idx]
wangshankun's avatar
wangshankun committed
120
121
122
123
124
125
    if ori_ratio < 1.0:
        target_h, target_w = 480, 832
    elif ori_ratio == 1.0:
        target_h, target_w = 480, 480
    else:
        target_h, target_w = 832, 480
wangshankun's avatar
wangshankun committed
126
127
128
129
130
131
132
133
134
135
136
137
138
139
    for resolution in bucket_config[closet_ratio][0]:
        if ori_height * ori_weight >= resolution[0] * resolution[1]:
            target_h, target_w = resolution
    cropped_img = isotropic_crop_resize(img, (target_h, target_w))
    return cropped_img, target_h, target_w


def array_to_video(
    image_array: np.ndarray,
    output_path: str,
    fps: Union[int, float] = 30,
    resolution: Optional[Union[Tuple[int, int], Tuple[float, float]]] = None,
    disable_log: bool = False,
    lossless: bool = True,
140
    output_pix_fmt: str = "yuv420p",
wangshankun's avatar
wangshankun committed
141
) -> None:
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
    """Convert an array to a video directly, gif not supported.

    Args:
        image_array (np.ndarray): shape should be (f * h * w * 3).
        output_path (str): output video file path.
        fps (Union[int, float, optional): fps. Defaults to 30.
        resolution (Optional[Union[Tuple[int, int], Tuple[float, float]]],
            optional): (height, width) of the output video.
            Defaults to None.
        disable_log (bool, optional): whether close the ffmepg command info.
            Defaults to False.
        output_pix_fmt (str): output pix_fmt in ffmpeg command.
    Raises:
        FileNotFoundError: check output path.
        TypeError: check input array.

    Returns:
        None.
    """
wangshankun's avatar
wangshankun committed
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
    if not isinstance(image_array, np.ndarray):
        raise TypeError("Input should be np.ndarray.")
    assert image_array.ndim == 4
    assert image_array.shape[-1] == 3
    if resolution:
        height, width = resolution
        width += width % 2
        height += height % 2
    else:
        image_array = pad_for_libx264(image_array)
        height, width = image_array.shape[1], image_array.shape[2]
    if lossless:
        command = [
            "/usr/bin/ffmpeg",
            "-y",  # (optional) overwrite output file if it exists
            "-f",
            "rawvideo",
            "-s",
            f"{int(width)}x{int(height)}",  # size of one frame
            "-pix_fmt",
            "bgr24",
            "-r",
            f"{fps}",  # frames per second
            "-loglevel",
            "error",
            "-threads",
            "4",
            "-i",
            "-",  # The input comes from a pipe
            "-vcodec",
            "libx264rgb",
            "-crf",
            "0",
            "-an",  # Tells FFMPEG not to expect any audio
            output_path,
        ]
    else:
198
        output_pix_fmt = output_pix_fmt or "yuv420p"
wangshankun's avatar
wangshankun committed
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
        command = [
            "/usr/bin/ffmpeg",
            "-y",  # (optional) overwrite output file if it exists
            "-f",
            "rawvideo",
            "-s",
            f"{int(width)}x{int(height)}",  # size of one frame
            "-pix_fmt",
            "bgr24",
            "-r",
            f"{fps}",  # frames per second
            "-loglevel",
            "error",
            "-threads",
            "4",
            "-i",
            "-",  # The input comes from a pipe
            "-vcodec",
            "libx264",
218
219
            "-pix_fmt",
            f"{output_pix_fmt}",
wangshankun's avatar
wangshankun committed
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
            "-an",  # Tells FFMPEG not to expect any audio
            output_path,
        ]

    if not disable_log:
        print(f'Running "{" ".join(command)}"')
    process = subprocess.Popen(
        command,
        stdin=subprocess.PIPE,
        stderr=subprocess.PIPE,
    )
    if process.stdin is None or process.stderr is None:
        raise BrokenPipeError("No buffer received.")
    index = 0
    while True:
        if index >= image_array.shape[0]:
            break
        process.stdin.write(image_array[index].tobytes())
        index += 1
    process.stdin.close()
    process.stderr.close()
    process.wait()


def pad_for_libx264(image_array):
    if image_array.ndim == 2 or (image_array.ndim == 3 and image_array.shape[2] == 3):
        hei_index = 0
        wid_index = 1
    elif image_array.ndim == 4 or (image_array.ndim == 3 and image_array.shape[2] != 3):
        hei_index = 1
        wid_index = 2
    else:
        return image_array
    hei_pad = image_array.shape[hei_index] % 2
    wid_pad = image_array.shape[wid_index] % 2
    if hei_pad + wid_pad > 0:
        pad_width = []
        for dim_index in range(image_array.ndim):
            if dim_index == hei_index:
                pad_width.append((0, hei_pad))
            elif dim_index == wid_index:
                pad_width.append((0, wid_pad))
            else:
                pad_width.append((0, 0))
        values = 0
        image_array = np.pad(image_array, pad_width, mode="constant", constant_values=values)
    return image_array


def generate_unique_path(path):
    if not os.path.exists(path):
        return path
    root, ext = os.path.splitext(path)
    index = 1
    new_path = f"{root}-{index}{ext}"
    while os.path.exists(new_path):
        index += 1
        new_path = f"{root}-{index}{ext}"
    return new_path


def save_to_video(gen_lvideo, out_path, target_fps):
    gen_lvideo = rearrange(gen_lvideo, "B C T H W -> B T H W C")
    gen_lvideo = (gen_lvideo[0].cpu().numpy() * 127.5 + 127.5).astype(np.uint8)
    gen_lvideo = gen_lvideo[..., ::-1].copy()
    generate_unique_path(out_path)
    array_to_video(gen_lvideo, output_path=out_path, fps=target_fps, lossless=False)


def save_audio(
wangshankun's avatar
wangshankun committed
290
    audio_array,
wangshankun's avatar
wangshankun committed
291
    audio_name: str,
PengGao's avatar
PengGao committed
292
    video_name: str,
wangshankun's avatar
wangshankun committed
293
    sr: int = 16000,
PengGao's avatar
PengGao committed
294
    output_path: Optional[str] = None,
wangshankun's avatar
wangshankun committed
295
296
):
    logger.info(f"Saving audio to {audio_name} type: {type(audio_array)}")
wangshankun's avatar
wangshankun committed
297
298
299
300
301
302

    ta.save(
        audio_name,
        torch.tensor(audio_array[None]),
        sample_rate=sr,
    )
wangshankun's avatar
wangshankun committed
303

PengGao's avatar
PengGao committed
304
305
306
307
308
    if output_path is None:
        out_video = f"{video_name[:-4]}_with_audio.mp4"
    else:
        out_video = output_path

wangshankun's avatar
wangshankun committed
309
310
311
312
313
314
315
    parent_dir = os.path.dirname(out_video)
    if parent_dir and not os.path.exists(parent_dir):
        os.makedirs(parent_dir, exist_ok=True)

    if os.path.exists(out_video):
        os.remove(out_video)

PengGao's avatar
PengGao committed
316
317
318
    subprocess.call(["/usr/bin/ffmpeg", "-y", "-i", video_name, "-i", audio_name, out_video])

    return out_video
wangshankun's avatar
wangshankun committed
319
320
321
322
323
324
325


@RUNNER_REGISTER("wan2.1_audio")
class WanAudioRunner(WanRunner):
    def __init__(self, config):
        super().__init__(config)

wangshankun's avatar
wangshankun committed
326
327
328
329
    def init_scheduler(self):
        scheduler = EulerSchedulerTimestepFix(self.config)
        self.model.set_scheduler(scheduler)

wangshankun's avatar
wangshankun committed
330
    def load_audio_models(self):
wangshankun's avatar
wangshankun committed
331
332
        ##音频特征提取器
        self.audio_preprocess = AutoFeatureExtractor.from_pretrained(self.config["model_path"], subfolder="audio_encoder")
wangshankun's avatar
wangshankun committed
333
334
335

        ##音频驱动视频生成adapter
        audio_adapter_path = self.config["model_path"] + "/audio_adapter.safetensors"
wangshankun's avatar
wangshankun committed
336
337
338
339
340
341
342
        audio_adaper = AudioAdapter.from_transformer(
            self.model,
            audio_feature_dim=1024,
            interval=1,
            time_freq_dim=256,
            projection_transformer_layers=4,
        )
wangshankun's avatar
wangshankun committed
343
        audio_adapter = rank0_load_state_dict_from_path(audio_adaper, audio_adapter_path, strict=False)
wangshankun's avatar
wangshankun committed
344

wangshankun's avatar
wangshankun committed
345
        ##音频特征编码器
wangshankun's avatar
wangshankun committed
346
        device = self.model.device
wangshankun's avatar
wangshankun committed
347
        audio_encoder_repo = self.config["model_path"] + "/audio_encoder"
wangshankun's avatar
wangshankun committed
348
349
350
351
352
353
        audio_adapter_pipe = AudioAdapterPipe(audio_adapter, audio_encoder_repo=audio_encoder_repo, dtype=torch.bfloat16, device=device, generator=torch.Generator(device), weight=1.0)

        return audio_adapter_pipe

    def load_transformer(self):
        base_model = WanAudioModel(self.config.model_path, self.config, self.init_device)
wangshankun's avatar
wangshankun committed
354

355
        if self.config.get("lora_configs") and self.config.lora_configs:
wangshankun's avatar
wangshankun committed
356
357
            assert not self.config.get("dit_quantized", False) or self.config.mm_config.get("weight_auto_quant", False)
            lora_wrapper = WanLoraWrapper(base_model)
358
359
360
361
362
363
            for lora_config in self.config.lora_configs:
                lora_path = lora_config["path"]
                strength = lora_config.get("strength", 1.0)
                lora_name = lora_wrapper.load_lora(lora_path)
                lora_wrapper.apply_lora(lora_name, strength)
                logger.info(f"Loaded LoRA: {lora_name} with strength: {strength}")
wangshankun's avatar
wangshankun committed
364

wangshankun's avatar
wangshankun committed
365
366
        return base_model

wangshankun's avatar
wangshankun committed
367
    def load_image_encoder(self):
wangshankun's avatar
wangshankun committed
368
369
        clip_model_dir = self.config["model_path"] + "/image_encoder"
        image_encoder = WanVideoIPHandler("CLIPModel", repo_or_path=clip_model_dir, require_grad=False, mode="eval", device=self.init_device, dtype=torch.float16)
wangshankun's avatar
wangshankun committed
370
371
372

        return image_encoder

wangshankun's avatar
wangshankun committed
373
374
375
376
377
378
379
380
381
382
383
    def run_image_encoder(self, config, vae_model):
        ref_img = Image.open(config.image_path)
        ref_img = (np.array(ref_img).astype(np.float32) - 127.5) / 127.5
        ref_img = torch.from_numpy(ref_img).to(vae_model.device)
        ref_img = rearrange(ref_img, "H W C -> 1 C H W")
        ref_img = ref_img[:, :3]

        # resize and crop image
        cond_frms, tgt_h, tgt_w = adaptive_resize(ref_img)
        config.tgt_h = tgt_h
        config.tgt_w = tgt_w
wangshankun's avatar
wangshankun committed
384
        clip_encoder_out = self.image_encoder.encode(cond_frms).squeeze(0).to(torch.bfloat16)
wangshankun's avatar
wangshankun committed
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406

        cond_frms = rearrange(cond_frms, "1 C H W -> 1 C 1 H W")
        lat_h, lat_w = tgt_h // 8, tgt_w // 8
        config.lat_h = lat_h
        config.lat_w = lat_w
        vae_encode_out = vae_model.encode(cond_frms.to(torch.float), config)
        if isinstance(vae_encode_out, list):  #
            # list转tensor
            vae_encode_out = torch.stack(vae_encode_out, dim=0).to(torch.bfloat16)

        return vae_encode_out, clip_encoder_out

    def run_input_encoder_internal(self):
        image_encoder_output = None
        if os.path.isfile(self.config.image_path):
            with ProfilingContext("Run Img Encoder"):
                vae_encode_out, clip_encoder_out = self.run_image_encoder(self.config, self.vae_encoder)
                image_encoder_output = {
                    "clip_encoder_out": clip_encoder_out,
                    "vae_encode_out": vae_encode_out,
                }
                logger.info(f"clip_encoder_out:{clip_encoder_out.shape} vae_encode_out:{vae_encode_out.shape}")
PengGao's avatar
PengGao committed
407

wangshankun's avatar
wangshankun committed
408
        with ProfilingContext("Run Text Encoder"):
PengGao's avatar
PengGao committed
409
410
411
            logger.info(f"Prompt: {self.config['prompt']}")
            img = Image.open(self.config["image_path"]).convert("RGB")
            text_encoder_output = self.run_text_encoder(self.config["prompt"], img)
wangshankun's avatar
wangshankun committed
412
413
414
415

        self.set_target_shape()
        self.inputs = {"text_encoder_output": text_encoder_output, "image_encoder_output": image_encoder_output}

PengGao's avatar
PengGao committed
416
        # del self.image_encoder  # 删除ref的clip模型,只使用一次
wangshankun's avatar
wangshankun committed
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
        gc.collect()
        torch.cuda.empty_cache()

    def set_target_shape(self):
        ret = {}
        num_channels_latents = 16
        if self.config.task == "i2v":
            self.config.target_shape = (
                num_channels_latents,
                (self.config.target_video_length - 1) // self.config.vae_stride[0] + 1,
                self.config.lat_h,
                self.config.lat_w,
            )
            ret["lat_h"] = self.config.lat_h
            ret["lat_w"] = self.config.lat_w
        else:
            error_msg = "t2v task is not supported in WanAudioRunner"
            assert 1 == 0, error_msg

        ret["target_shape"] = self.config.target_shape
        return ret

    def run(self):
        def load_audio(in_path: str, sr: float = 16000):
            audio_array, ori_sr = ta.load(in_path)
            audio_array = ta.functional.resample(audio_array.mean(0), orig_freq=ori_sr, new_freq=sr)
            return audio_array.numpy()

        def get_audio_range(start_frame: int, end_frame: int, fps: float, audio_sr: float = 16000):
            audio_frame_rate = audio_sr / fps
            return round(start_frame * audio_frame_rate), round((end_frame + 1) * audio_frame_rate)

wangshankun's avatar
wangshankun committed
449
450
451
452
453
454
455
456
457
458
459
460
        def wan_mask_rearrange(mask: torch.Tensor):
            # mask: 1, T, H, W, where 1 means the input mask is one-channel
            if mask.ndim == 3:
                mask = mask[None]
            assert mask.ndim == 4
            _, t, h, w = mask.shape
            assert t == ((t - 1) // 4 * 4 + 1)
            mask_first_frame = torch.repeat_interleave(mask[:, 0:1], repeats=4, dim=1)
            mask = torch.concat([mask_first_frame, mask[:, 1:]], dim=1)
            mask = mask.view(mask.shape[1] // 4, 4, h, w)
            return mask.transpose(0, 1)  # 4, T // 4, H, W

wangshankun's avatar
wangshankun committed
461
462
463
        self.inputs["audio_adapter_pipe"] = self.load_audio_models()

        # process audio
wangshankun's avatar
wangshankun committed
464
465
        audio_sr = self.config.get("audio_sr", 16000)
        max_num_frames = self.config.get("target_video_length", 81)  # wan2.1一段最多81帧,5秒,16fps
wangshankun's avatar
wangshankun committed
466
        target_fps = self.config.get("target_fps", 16)  # 音视频同步帧率
wangshankun's avatar
wangshankun committed
467
        video_duration = self.config.get("video_duration", 5)  # 期望视频输出时长
wangshankun's avatar
wangshankun committed
468
469
470
471
        audio_array = load_audio(self.config["audio_path"], sr=audio_sr)
        audio_len = int(audio_array.shape[0] / audio_sr * target_fps)
        prev_frame_length = 5
        prev_token_length = (prev_frame_length - 1) // 4 + 1
wangshankun's avatar
wangshankun committed
472
        max_num_audio_length = int((max_num_frames + 1) / target_fps * audio_sr)
wangshankun's avatar
wangshankun committed
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511

        interval_num = 1
        # expected_frames
        expected_frames = min(max(1, int(float(video_duration) * target_fps)), audio_len)
        res_frame_num = 0
        if expected_frames <= max_num_frames:
            interval_num = 1
        else:
            interval_num = max(int((expected_frames - max_num_frames) / (max_num_frames - prev_frame_length)) + 1, 1)
            res_frame_num = expected_frames - interval_num * (max_num_frames - prev_frame_length)
            if res_frame_num > 5:
                interval_num += 1

        audio_start, audio_end = get_audio_range(0, expected_frames, fps=target_fps, audio_sr=audio_sr)
        audio_array_ori = audio_array[audio_start:audio_end]

        gen_video_list = []
        cut_audio_list = []
        # reference latents

        tgt_h = self.config.tgt_h
        tgt_w = self.config.tgt_w
        device = self.model.scheduler.latents.device
        dtype = torch.bfloat16
        vae_dtype = torch.float

        for idx in range(interval_num):
            torch.manual_seed(42 + idx)
            logger.info(f"###  manual_seed: {42 + idx} ####")
            useful_length = -1
            if idx == 0:  # 第一段 Condition padding0
                prev_frames = torch.zeros((1, 3, max_num_frames, tgt_h, tgt_w), device=device)
                prev_latents = self.vae_encoder.encode(prev_frames.to(vae_dtype), self.config)[0].to(dtype)
                prev_len = 0
                audio_start, audio_end = get_audio_range(0, max_num_frames, fps=target_fps, audio_sr=audio_sr)
                audio_array = audio_array_ori[audio_start:audio_end]
                if expected_frames < max_num_frames:
                    useful_length = audio_array.shape[0]
                    audio_array = np.concatenate((audio_array, np.zeros(max_num_audio_length)[: max_num_audio_length - useful_length]), axis=0)
wangshankun's avatar
wangshankun committed
512
                audio_input_feat = self.audio_preprocess(audio_array, sampling_rate=audio_sr, return_tensors="pt").input_values.squeeze(0)
wangshankun's avatar
wangshankun committed
513
514
515

            elif res_frame_num > 5 and idx == interval_num - 1:  # 最后一段可能不够81帧
                prev_frames = torch.zeros((1, 3, max_num_frames, tgt_h, tgt_w), device=device)
wangshankun's avatar
wangshankun committed
516
517
518
519
520
521
522
523
                last_frames = gen_video_list[-1][:, :, -prev_frame_length:].clone().to(device)

                last_frames = last_frames.cpu().detach().numpy()
                last_frames = add_noise_to_frames(last_frames)
                last_frames = add_mask_to_frames(last_frames, mask_rate=0.1)  # mask 0.10
                last_frames = torch.from_numpy(last_frames).to(dtype=dtype, device=device)

                prev_frames[:, :, :prev_frame_length] = last_frames
wangshankun's avatar
wangshankun committed
524
525
526
527
528
529
                prev_latents = self.vae_encoder.encode(prev_frames.to(vae_dtype), self.config)[0].to(dtype)
                prev_len = prev_token_length
                audio_start, audio_end = get_audio_range(idx * max_num_frames - idx * prev_frame_length, expected_frames, fps=target_fps, audio_sr=audio_sr)
                audio_array = audio_array_ori[audio_start:audio_end]
                useful_length = audio_array.shape[0]
                audio_array = np.concatenate((audio_array, np.zeros(max_num_audio_length)[: max_num_audio_length - useful_length]), axis=0)
wangshankun's avatar
wangshankun committed
530
                audio_input_feat = self.audio_preprocess(audio_array, sampling_rate=audio_sr, return_tensors="pt").input_values.squeeze(0)
wangshankun's avatar
wangshankun committed
531
532
533

            else:  # 中间段满81帧带pre_latens
                prev_frames = torch.zeros((1, 3, max_num_frames, tgt_h, tgt_w), device=device)
wangshankun's avatar
wangshankun committed
534
535
536
537
538
539
540
541
                last_frames = gen_video_list[-1][:, :, -prev_frame_length:].clone().to(device)

                last_frames = last_frames.cpu().detach().numpy()
                last_frames = add_noise_to_frames(last_frames)
                last_frames = add_mask_to_frames(last_frames, mask_rate=0.1)  # mask 0.10
                last_frames = torch.from_numpy(last_frames).to(dtype=dtype, device=device)

                prev_frames[:, :, :prev_frame_length] = last_frames
wangshankun's avatar
wangshankun committed
542
543
544
545
                prev_latents = self.vae_encoder.encode(prev_frames.to(vae_dtype), self.config)[0].to(dtype)
                prev_len = prev_token_length
                audio_start, audio_end = get_audio_range(idx * max_num_frames - idx * prev_frame_length, (idx + 1) * max_num_frames - idx * prev_frame_length, fps=target_fps, audio_sr=audio_sr)
                audio_array = audio_array_ori[audio_start:audio_end]
wangshankun's avatar
wangshankun committed
546
                audio_input_feat = self.audio_preprocess(audio_array, sampling_rate=audio_sr, return_tensors="pt").input_values.squeeze(0)
wangshankun's avatar
wangshankun committed
547
548
549
550
551
552
553
554

            self.inputs["audio_encoder_output"] = audio_input_feat.to(device)

            if idx != 0:
                self.model.scheduler.reset()

            if prev_latents is not None:
                ltnt_channel, nframe, height, width = self.model.scheduler.latents.shape
wangshankun's avatar
wangshankun committed
555
556
557
558
559
                # bs = 1
                frames_n = (nframe - 1) * 4 + 1
                prev_mask = torch.zeros((1, frames_n, height, width), device=device, dtype=dtype)
                prev_mask[:, prev_len:] = 0
                prev_mask = wan_mask_rearrange(prev_mask).unsqueeze(0)
wangshankun's avatar
wangshankun committed
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
                previmg_encoder_output = {
                    "prev_latents": prev_latents,
                    "prev_mask": prev_mask,
                }
                self.inputs["previmg_encoder_output"] = previmg_encoder_output

            for step_index in range(self.model.scheduler.infer_steps):
                logger.info(f"==> step_index: {step_index} / {self.model.scheduler.infer_steps}")

                with ProfilingContext4Debug("step_pre"):
                    self.model.scheduler.step_pre(step_index=step_index)

                with ProfilingContext4Debug("infer"):
                    self.model.infer(self.inputs)

                with ProfilingContext4Debug("step_post"):
                    self.model.scheduler.step_post()

            latents = self.model.scheduler.latents
            generator = self.model.scheduler.generator
            gen_video = self.vae_decoder.decode(latents, generator=generator, config=self.config)
            gen_video = torch.clamp(gen_video, -1, 1)
            start_frame = 0 if idx == 0 else prev_frame_length
            start_audio_frame = 0 if idx == 0 else int((prev_frame_length + 1) * audio_sr / target_fps)
wangshankun's avatar
wangshankun committed
584

wangshankun's avatar
wangshankun committed
585
            if res_frame_num > 5 and idx == interval_num - 1:
wangshankun's avatar
wangshankun committed
586
                gen_video_list.append(gen_video[:, :, start_frame:res_frame_num].cpu())
wangshankun's avatar
wangshankun committed
587
588
                cut_audio_list.append(audio_array[start_audio_frame:useful_length])
            elif expected_frames < max_num_frames and useful_length != -1:
wangshankun's avatar
wangshankun committed
589
                gen_video_list.append(gen_video[:, :, start_frame:expected_frames].cpu())
wangshankun's avatar
wangshankun committed
590
591
                cut_audio_list.append(audio_array[start_audio_frame:useful_length])
            else:
wangshankun's avatar
wangshankun committed
592
                gen_video_list.append(gen_video[:, :, start_frame:].cpu())
wangshankun's avatar
wangshankun committed
593
594
595
596
                cut_audio_list.append(audio_array[start_audio_frame:])

        gen_lvideo = torch.cat(gen_video_list, dim=2).float()
        merge_audio = np.concatenate(cut_audio_list, axis=0).astype(np.float32)
PengGao's avatar
PengGao committed
597
        out_path = os.path.join("./", "video_merge.mp4")
wangshankun's avatar
wangshankun committed
598
599
        audio_file = os.path.join("./", "audio_merge.wav")
        save_to_video(gen_lvideo, out_path, target_fps)
PengGao's avatar
PengGao committed
600
        save_audio(merge_audio, audio_file, out_path, output_path=self.config.get("save_video_path", None))
wangshankun's avatar
wangshankun committed
601
602
603
        os.remove(out_path)
        os.remove(audio_file)

604
    def run_pipeline(self):
wangshankun's avatar
wangshankun committed
605
606
607
608
609
610
611
612
613
614
615
616
        if self.config["use_prompt_enhancer"]:
            self.config["prompt_enhanced"] = self.post_prompt_enhancer()

        self.run_input_encoder_internal()
        self.set_target_shape()

        self.init_scheduler()
        self.model.scheduler.prepare(self.inputs["image_encoder_output"])
        self.run()
        self.end_run()

        gc.collect()
wangshankun's avatar
wangshankun committed
617
        torch.cuda.empty_cache()