__main__.py 16.1 KB
Newer Older
helloyongyang's avatar
helloyongyang committed
1
2
3
4
5
6
7
import argparse
import torch
import torch.distributed as dist
import os
import time
import gc
import json
helloyongyang's avatar
helloyongyang committed
8
import torchvision
helloyongyang's avatar
helloyongyang committed
9
10
11
12
13
14
import torchvision.transforms.functional as TF
import numpy as np
from PIL import Image
from lightx2v.text2v.models.text_encoders.hf.llama.model import TextEncoderHFLlamaModel
from lightx2v.text2v.models.text_encoders.hf.clip.model import TextEncoderHFClipModel
from lightx2v.text2v.models.text_encoders.hf.t5.model import T5EncoderModel
helloyongyang's avatar
helloyongyang committed
15
from lightx2v.text2v.models.text_encoders.hf.llava.model import TextEncoderHFLlavaModel
helloyongyang's avatar
helloyongyang committed
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

from lightx2v.text2v.models.schedulers.hunyuan.scheduler import HunyuanScheduler
from lightx2v.text2v.models.schedulers.hunyuan.feature_caching.scheduler import HunyuanSchedulerFeatureCaching
from lightx2v.text2v.models.schedulers.wan.scheduler import WanScheduler
from lightx2v.text2v.models.schedulers.wan.feature_caching.scheduler import WanSchedulerFeatureCaching

from lightx2v.text2v.models.networks.hunyuan.model import HunyuanModel
from lightx2v.text2v.models.networks.wan.model import WanModel

from lightx2v.text2v.models.video_encoders.hf.autoencoder_kl_causal_3d.model import VideoEncoderKLCausal3DModel
from lightx2v.text2v.models.video_encoders.hf.wan.vae import WanVAE
from lightx2v.utils.utils import save_videos_grid, seed_all, cache_video
from lightx2v.common.ops import *
from lightx2v.image2v.models.wan.model import CLIPModel


def load_models(args, model_config):
Xinchi Huang's avatar
Xinchi Huang committed
33
    if model_config["parallel_attn_type"]:
helloyongyang's avatar
helloyongyang committed
34
35
36
37
38
39
40
41
42
        cur_rank = dist.get_rank()  # 获取当前进程的 rank
        torch.cuda.set_device(cur_rank)  # 设置当前进程的 CUDA 设备
    image_encoder = None
    if args.cpu_offload:
        init_device = torch.device("cpu")
    else:
        init_device = torch.device("cuda")

    if args.model_cls == "hunyuan":
helloyongyang's avatar
helloyongyang committed
43
44
45
46
        if args.task == "t2v":
            text_encoder_1 = TextEncoderHFLlamaModel(os.path.join(args.model_path, "text_encoder"), init_device)
        else:
            text_encoder_1 = TextEncoderHFLlavaModel(os.path.join(args.model_path, "text_encoder_i2v"), init_device)
helloyongyang's avatar
helloyongyang committed
47
48
        text_encoder_2 = TextEncoderHFClipModel(os.path.join(args.model_path, "text_encoder_2"), init_device)
        text_encoders = [text_encoder_1, text_encoder_2]
helloyongyang's avatar
helloyongyang committed
49
50
        model = HunyuanModel(args.model_path, model_config, init_device, args)
        vae_model = VideoEncoderKLCausal3DModel(args.model_path, dtype=torch.float16, device=init_device, args=args)
helloyongyang's avatar
helloyongyang committed
51
52
53
54
55

    elif args.model_cls == "wan2.1":
        text_encoder = T5EncoderModel(
            text_len=model_config["text_len"],
            dtype=torch.bfloat16,
TorynCurtis's avatar
TorynCurtis committed
56
            device=init_device,
helloyongyang's avatar
helloyongyang committed
57
58
59
60
61
            checkpoint_path=os.path.join(args.model_path, "models_t5_umt5-xxl-enc-bf16.pth"),
            tokenizer_path=os.path.join(args.model_path, "google/umt5-xxl"),
            shard_fn=None,
        )
        text_encoders = [text_encoder]
gushiqiao's avatar
gushiqiao committed
62
        model = WanModel(args.model_path, model_config, init_device)
TorynCurtis's avatar
TorynCurtis committed
63
        vae_model = WanVAE(vae_pth=os.path.join(args.model_path, "Wan2.1_VAE.pth"), device=init_device, parallel=args.parallel_vae)
Dongz's avatar
Dongz committed
64
        if args.task == "i2v":
helloyongyang's avatar
helloyongyang committed
65
66
            image_encoder = CLIPModel(
                dtype=torch.float16,
TorynCurtis's avatar
TorynCurtis committed
67
                device=init_device,
Dongz's avatar
Dongz committed
68
69
70
                checkpoint_path=os.path.join(args.model_path, "models_clip_open-clip-xlm-roberta-large-vit-huge-14.pth"),
                tokenizer_path=os.path.join(args.model_path, "xlm-roberta-large"),
            )
helloyongyang's avatar
helloyongyang committed
71
72
73
74
75
76
    else:
        raise NotImplementedError(f"Unsupported model class: {args.model_cls}")

    return model, text_encoders, vae_model, image_encoder


helloyongyang's avatar
helloyongyang committed
77
def set_target_shape(args, image_encoder_output):
Dongz's avatar
Dongz committed
78
    if args.model_cls == "hunyuan":
helloyongyang's avatar
helloyongyang committed
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
        if args.task == "t2v":
            vae_scale_factor = 2 ** (4 - 1)
            args.target_shape = (
                1,
                16,
                (args.target_video_length - 1) // 4 + 1,
                int(args.target_height) // vae_scale_factor,
                int(args.target_width) // vae_scale_factor,
            )
        elif args.task == "i2v":
            vae_scale_factor = 2 ** (4 - 1)
            args.target_shape = (
                1,
                16,
                (args.target_video_length - 1) // 4 + 1,
                int(image_encoder_output["target_height"]) // vae_scale_factor,
                int(image_encoder_output["target_width"]) // vae_scale_factor,
            )
Dongz's avatar
Dongz committed
97
98
99
100
    elif args.model_cls == "wan2.1":
        if args.task == "i2v":
            args.target_shape = (16, 21, args.lat_h, args.lat_w)
        elif args.task == "t2v":
helloyongyang's avatar
helloyongyang committed
101
102
103
104
105
106
107
108
            args.target_shape = (
                16,
                (args.target_video_length - 1) // 4 + 1,
                int(args.target_height) // args.vae_stride[1],
                int(args.target_width) // args.vae_stride[2],
            )


helloyongyang's avatar
helloyongyang committed
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
def generate_crop_size_list(base_size=256, patch_size=32, max_ratio=4.0):
    num_patches = round((base_size / patch_size) ** 2)
    assert max_ratio >= 1.0
    crop_size_list = []
    wp, hp = num_patches, 1
    while wp > 0:
        if max(wp, hp) / min(wp, hp) <= max_ratio:
            crop_size_list.append((wp * patch_size, hp * patch_size))
        if (hp + 1) * wp <= num_patches:
            hp += 1
        else:
            wp -= 1
    return crop_size_list


def get_closest_ratio(height: float, width: float, ratios: list, buckets: list):
    aspect_ratio = float(height) / float(width)
    diff_ratios = ratios - aspect_ratio

    if aspect_ratio >= 1:
        indices = [(index, x) for index, x in enumerate(diff_ratios) if x <= 0]
    else:
        indices = [(index, x) for index, x in enumerate(diff_ratios) if x > 0]

    closest_ratio_id = min(indices, key=lambda pair: abs(pair[1]))[0]
    closest_size = buckets[closest_ratio_id]
    closest_ratio = ratios[closest_ratio_id]

    return closest_size, closest_ratio


helloyongyang's avatar
helloyongyang committed
140
141
def run_image_encoder(args, image_encoder, vae_model):
    if args.model_cls == "hunyuan":
helloyongyang's avatar
helloyongyang committed
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
        img = Image.open(args.image_path).convert("RGB")
        origin_size = img.size

        i2v_resolution = "720p"
        if i2v_resolution == "720p":
            bucket_hw_base_size = 960
        elif i2v_resolution == "540p":
            bucket_hw_base_size = 720
        elif i2v_resolution == "360p":
            bucket_hw_base_size = 480
        else:
            raise ValueError(f"i2v_resolution: {i2v_resolution} must be in [360p, 540p, 720p]")

        crop_size_list = generate_crop_size_list(bucket_hw_base_size, 32)
        aspect_ratios = np.array([round(float(h) / float(w), 5) for h, w in crop_size_list])
        closest_size, closest_ratio = get_closest_ratio(origin_size[1], origin_size[0], aspect_ratios, crop_size_list)

        resize_param = min(closest_size)
        center_crop_param = closest_size

        ref_image_transform = torchvision.transforms.Compose(
            [torchvision.transforms.Resize(resize_param), torchvision.transforms.CenterCrop(center_crop_param), torchvision.transforms.ToTensor(), torchvision.transforms.Normalize([0.5], [0.5])]
        )

        semantic_image_pixel_values = [ref_image_transform(img)]
        semantic_image_pixel_values = torch.cat(semantic_image_pixel_values).unsqueeze(0).unsqueeze(2).to(torch.float16).to(torch.device("cuda"))

        img_latents = vae_model.encode(semantic_image_pixel_values, args).mode()

        scaling_factor = 0.476986
        img_latents.mul_(scaling_factor)

        target_height, target_width = closest_size

        return {"img": img, "img_latents": img_latents, "target_height": target_height, "target_width": target_width}

Dongz's avatar
Dongz committed
178
    elif args.model_cls == "wan2.1":
helloyongyang's avatar
helloyongyang committed
179
180
        img = Image.open(args.image_path).convert("RGB")
        img = TF.to_tensor(img).sub_(0.5).div_(0.5).cuda()
gushiqiao's avatar
gushiqiao committed
181
        clip_encoder_out = image_encoder.visual([img[:, None, :, :]], args).squeeze(0).to(torch.bfloat16)
helloyongyang's avatar
helloyongyang committed
182
183
184
        h, w = img.shape[1:]
        aspect_ratio = h / w
        max_area = args.target_height * args.target_width
Dongz's avatar
Dongz committed
185
186
        lat_h = round(np.sqrt(max_area * aspect_ratio) // args.vae_stride[1] // args.patch_size[1] * args.patch_size[1])
        lat_w = round(np.sqrt(max_area / aspect_ratio) // args.vae_stride[2] // args.patch_size[2] * args.patch_size[2])
helloyongyang's avatar
helloyongyang committed
187
188
189
190
191
        h = lat_h * args.vae_stride[1]
        w = lat_w * args.vae_stride[2]

        args.lat_h = lat_h
        args.lat_w = lat_w
Dongz's avatar
Dongz committed
192
193

        msk = torch.ones(1, 81, lat_h, lat_w, device=torch.device("cuda"))
helloyongyang's avatar
helloyongyang committed
194
        msk[:, 1:] = 0
Dongz's avatar
Dongz committed
195
        msk = torch.concat([torch.repeat_interleave(msk[:, 0:1], repeats=4, dim=1), msk[:, 1:]], dim=1)
helloyongyang's avatar
helloyongyang committed
196
197
        msk = msk.view(1, msk.shape[1] // 4, 4, lat_h, lat_w)
        msk = msk.transpose(1, 2)[0]
gushiqiao's avatar
gushiqiao committed
198
199
200
        vae_encode_out = vae_model.encode(
            [torch.concat([torch.nn.functional.interpolate(img[None].cpu(), size=(h, w), mode="bicubic").transpose(0, 1), torch.zeros(3, 80, h, w)], dim=1).cuda()], args
        )[0]
helloyongyang's avatar
helloyongyang committed
201
202
203
204
        vae_encode_out = torch.concat([msk, vae_encode_out]).to(torch.bfloat16)
        return {"clip_encoder_out": clip_encoder_out, "vae_encode_out": vae_encode_out}

    else:
gushiqiao's avatar
gushiqiao committed
205
        raise NotImplementedError(f"Unsupported model class: {args.model_cls}")
helloyongyang's avatar
helloyongyang committed
206
207


helloyongyang's avatar
helloyongyang committed
208
def run_text_encoder(args, text, text_encoders, model_config, image_encoder_output):
helloyongyang's avatar
helloyongyang committed
209
210
211
    text_encoder_output = {}
    if args.model_cls == "hunyuan":
        for i, encoder in enumerate(text_encoders):
helloyongyang's avatar
helloyongyang committed
212
213
214
215
            if args.task == "i2v" and i == 0:
                text_state, attention_mask = encoder.infer(text, image_encoder_output["img"], args)
            else:
                text_state, attention_mask = encoder.infer(text, args)
Dongz's avatar
Dongz committed
216
217
            text_encoder_output[f"text_encoder_{i + 1}_text_states"] = text_state.to(dtype=torch.bfloat16)
            text_encoder_output[f"text_encoder_{i + 1}_attention_mask"] = attention_mask
helloyongyang's avatar
helloyongyang committed
218
219
220
221
222
223
224
225
226
227
228
229
230
231

    elif args.model_cls == "wan2.1":
        n_prompt = model_config.get("sample_neg_prompt", "")
        context = text_encoders[0].infer([text], args)
        context_null = text_encoders[0].infer([n_prompt if n_prompt else ""], args)
        text_encoder_output["context"] = context
        text_encoder_output["context_null"] = context_null

    else:
        raise NotImplementedError(f"Unsupported model type: {args.model_cls}")

    return text_encoder_output


helloyongyang's avatar
helloyongyang committed
232
def init_scheduler(args, image_encoder_output):
helloyongyang's avatar
helloyongyang committed
233
234
    if args.model_cls == "hunyuan":
        if args.feature_caching == "NoCaching":
helloyongyang's avatar
helloyongyang committed
235
            scheduler = HunyuanScheduler(args, image_encoder_output)
helloyongyang's avatar
helloyongyang committed
236
        elif args.feature_caching == "TaylorSeer":
helloyongyang's avatar
helloyongyang committed
237
            scheduler = HunyuanSchedulerFeatureCaching(args, image_encoder_output)
helloyongyang's avatar
helloyongyang committed
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
        else:
            raise NotImplementedError(f"Unsupported feature_caching type: {args.feature_caching}")

    elif args.model_cls == "wan2.1":
        if args.feature_caching == "NoCaching":
            scheduler = WanScheduler(args)
        elif args.feature_caching == "Tea":
            scheduler = WanSchedulerFeatureCaching(args)
        else:
            raise NotImplementedError(f"Unsupported feature_caching type: {args.feature_caching}")

    else:
        raise NotImplementedError(f"Unsupported model class: {args.model_cls}")
    return scheduler


def run_main_inference(args, model, text_encoder_output, image_encoder_output):
    for step_index in range(model.scheduler.infer_steps):
        torch.cuda.synchronize()
        time1 = time.time()

        model.scheduler.step_pre(step_index=step_index)

        torch.cuda.synchronize()
        time2 = time.time()

        model.infer(text_encoder_output, image_encoder_output, args)

        torch.cuda.synchronize()
        time3 = time.time()

        model.scheduler.step_post()

        torch.cuda.synchronize()
        time4 = time.time()

        print(f"step {step_index} infer time: {time3 - time2}")
        print(f"step {step_index} all time: {time4 - time1}")
        print("*" * 10)

    return model.scheduler.latents, model.scheduler.generator


def run_vae(latents, generator, args):
    images = vae_model.decode(latents, generator=generator, args=args)
    return images


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--model_cls", type=str, required=True, choices=["wan2.1", "hunyuan"], default="hunyuan")
    parser.add_argument("--task", type=str, choices=["t2v", "i2v"], default="t2v")
    parser.add_argument("--model_path", type=str, required=True)
    parser.add_argument("--config_path", type=str, default=None)
    parser.add_argument("--image_path", type=str, default=None)
Dongz's avatar
Dongz committed
293
    parser.add_argument("--save_video_path", type=str, default="./output_ligthx2v.mp4")
helloyongyang's avatar
helloyongyang committed
294
295
296
297
298
299
300
301
302
    parser.add_argument("--prompt", type=str, required=True)
    parser.add_argument("--infer_steps", type=int, required=True)
    parser.add_argument("--target_video_length", type=int, required=True)
    parser.add_argument("--target_width", type=int, required=True)
    parser.add_argument("--target_height", type=int, required=True)
    parser.add_argument("--attention_type", type=str, required=True)
    parser.add_argument("--sample_neg_prompt", type=str, default="")
    parser.add_argument("--sample_guide_scale", type=float, default=5.0)
    parser.add_argument("--sample_shift", type=float, default=5.0)
Dongz's avatar
Dongz committed
303
304
305
306
307
    parser.add_argument("--do_mm_calib", action="store_true")
    parser.add_argument("--cpu_offload", action="store_true")
    parser.add_argument("--feature_caching", choices=["NoCaching", "TaylorSeer", "Tea"], default="NoCaching")
    parser.add_argument("--mm_config", default=None)
    parser.add_argument("--seed", type=int, default=42)
Xinchi Huang's avatar
Xinchi Huang committed
308
    parser.add_argument("--parallel_attn_type", default=None, choices=["ulysses", "ring"])
Dongz's avatar
Dongz committed
309
310
311
312
    parser.add_argument("--parallel_vae", action="store_true")
    parser.add_argument("--max_area", action="store_true")
    parser.add_argument("--vae_stride", default=(4, 8, 8))
    parser.add_argument("--patch_size", default=(1, 2, 2))
helloyongyang's avatar
helloyongyang committed
313
314
315
316
317
318
    parser.add_argument("--teacache_thresh", type=float, default=0.26)
    parser.add_argument("--use_ret_steps", action="store_true", default=False)
    args = parser.parse_args()

    start_time = time.time()
    print(f"args: {args}")
Dongz's avatar
Dongz committed
319

helloyongyang's avatar
helloyongyang committed
320
321
    seed_all(args.seed)

Xinchi Huang's avatar
Xinchi Huang committed
322
    if args.parallel_attn_type:
Dongz's avatar
Dongz committed
323
        dist.init_process_group(backend="nccl")
helloyongyang's avatar
helloyongyang committed
324
325
326
327
328
329
330

    if args.mm_config:
        mm_config = json.loads(args.mm_config)
    else:
        mm_config = None

    model_config = {
331
        "model_cls": args.model_cls,
helloyongyang's avatar
helloyongyang committed
332
333
334
335
336
337
338
        "task": args.task,
        "attention_type": args.attention_type,
        "sample_neg_prompt": args.sample_neg_prompt,
        "mm_config": mm_config,
        "do_mm_calib": args.do_mm_calib,
        "cpu_offload": args.cpu_offload,
        "feature_caching": args.feature_caching,
Xinchi Huang's avatar
Xinchi Huang committed
339
        "parallel_attn_type": args.parallel_attn_type,
Dongz's avatar
Dongz committed
340
        "parallel_vae": args.parallel_vae,
helloyongyang's avatar
helloyongyang committed
341
342
343
344
345
346
347
348
349
350
351
    }

    if args.config_path is not None:
        with open(args.config_path, "r") as f:
            config = json.load(f)
        model_config.update(config)

    print(f"model_config: {model_config}")

    model, text_encoders, vae_model, image_encoder = load_models(args, model_config)

352
353
354
    load_models_time = time.time()
    print(f"Load models cost: {load_models_time - start_time}")

Dongz's avatar
Dongz committed
355
    if args.task in ["i2v"]:
helloyongyang's avatar
helloyongyang committed
356
357
358
359
        image_encoder_output = run_image_encoder(args, image_encoder, vae_model)
    else:
        image_encoder_output = {"clip_encoder_out": None, "vae_encode_out": None}

helloyongyang's avatar
helloyongyang committed
360
    text_encoder_output = run_text_encoder(args, args.prompt, text_encoders, model_config, image_encoder_output)
helloyongyang's avatar
helloyongyang committed
361

helloyongyang's avatar
helloyongyang committed
362
363
    set_target_shape(args, image_encoder_output)
    scheduler = init_scheduler(args, image_encoder_output)
helloyongyang's avatar
helloyongyang committed
364
365
366
367
368
369
370

    model.set_scheduler(scheduler)

    gc.collect()
    torch.cuda.empty_cache()
    latents, generator = run_main_inference(args, model, text_encoder_output, image_encoder_output)

371
372
373
374
    if args.cpu_offload:
        scheduler.clear()
        del text_encoder_output, image_encoder_output, model, text_encoders, scheduler
        torch.cuda.empty_cache()
helloyongyang's avatar
helloyongyang committed
375
376
377

    images = run_vae(latents, generator, args)

Xinchi Huang's avatar
Xinchi Huang committed
378
    if not args.parallel_attn_type or (args.parallel_attn_type and dist.get_rank() == 0):
379
        save_video_st = time.time()
Xinchi Huang's avatar
Xinchi Huang committed
380
381
382
383
        if args.model_cls == "wan2.1":
            cache_video(tensor=images, save_file=args.save_video_path, fps=16, nrow=1, normalize=True, value_range=(-1, 1))
        else:
            save_videos_grid(images, args.save_video_path, fps=24)
384
385
        save_video_et = time.time()
        print(f"Save video cost: {save_video_et - save_video_st}")
helloyongyang's avatar
helloyongyang committed
386
387

    end_time = time.time()
388
    print(f"Total cost: {end_time - start_time}")