gradio_demo.py 44.1 KB
Newer Older
gushiqiao's avatar
gushiqiao committed
1
2
3
4
5
6
7
8
9
10
11
import os
import gradio as gr
import asyncio
import argparse
import json
import torch
import gc
from easydict import EasyDict
from datetime import datetime
from loguru import logger

gushiqiao's avatar
gushiqiao committed
12
13
import importlib.util
import psutil
gushiqiao's avatar
gushiqiao committed
14
import random
gushiqiao's avatar
gushiqiao committed
15
16
17
18
19
20
21
22
23
24

logger.add(
    "inference_logs.log",
    rotation="100 MB",
    encoding="utf-8",
    enqueue=True,
    backtrace=True,
    diagnose=True,
)

gushiqiao's avatar
gushiqiao committed
25
26
27
28
29
30
MAX_NUMPY_SEED = 2**32 - 1


def generate_random_seed():
    return random.randint(0, MAX_NUMPY_SEED)

gushiqiao's avatar
gushiqiao committed
31

gushiqiao's avatar
gushiqiao committed
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
def is_module_installed(module_name):
    try:
        spec = importlib.util.find_spec(module_name)
        return spec is not None
    except ModuleNotFoundError:
        return False


def get_available_quant_ops():
    available_ops = []

    vllm_installed = is_module_installed("vllm")
    if vllm_installed:
        available_ops.append(("vllm", True))
    else:
        available_ops.append(("vllm", False))

    sgl_installed = is_module_installed("sgl_kernel")
    if sgl_installed:
        available_ops.append(("sgl", True))
    else:
        available_ops.append(("sgl", False))

    q8f_installed = is_module_installed("q8_kernels")
    if q8f_installed:
        available_ops.append(("q8f", True))
    else:
        available_ops.append(("q8f", False))

    return available_ops


def get_available_attn_ops():
    available_ops = []

    vllm_installed = is_module_installed("flash_attn")
    if vllm_installed:
        available_ops.append(("flash_attn2", True))
    else:
        available_ops.append(("flash_attn2", False))

    sgl_installed = is_module_installed("flash_attn_interface")
    if sgl_installed:
        available_ops.append(("flash_attn3", True))
    else:
        available_ops.append(("flash_attn3", False))

    q8f_installed = is_module_installed("sageattention")
    if q8f_installed:
        available_ops.append(("sage_attn2", True))
    else:
        available_ops.append(("sage_attn2", False))

gushiqiao's avatar
gushiqiao committed
85
86
87
88
89
90
    torch_installed = is_module_installed("torch")
    if torch_installed:
        available_ops.append(("torch_sdpa", True))
    else:
        available_ops.append(("torch_sdpa", False))

gushiqiao's avatar
gushiqiao committed
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
    return available_ops


def get_gpu_memory(gpu_idx=0):
    if not torch.cuda.is_available():
        return 0
    try:
        with torch.cuda.device(gpu_idx):
            memory_info = torch.cuda.mem_get_info()
            total_memory = memory_info[1] / (1024**3)  # Convert bytes to GB
            return total_memory
    except Exception as e:
        logger.warning(f"Failed to get GPU memory: {e}")
        return 0


def get_cpu_memory():
    available_bytes = psutil.virtual_memory().available
    return available_bytes / 1024**3
gushiqiao's avatar
gushiqiao committed
110
111


gushiqiao's avatar
gushiqiao committed
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
def cleanup_memory():
    gc.collect()

    if torch.cuda.is_available():
        torch.cuda.empty_cache()
        torch.cuda.synchronize()

    try:
        if hasattr(psutil, "virtual_memory"):
            if os.name == "posix":
                try:
                    os.system("sync")
                except:  # noqa
                    pass
    except:  # noqa
        pass


gushiqiao's avatar
gushiqiao committed
130
131
132
133
134
135
def generate_unique_filename(base_dir="./saved_videos"):
    os.makedirs(base_dir, exist_ok=True)
    timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
    return os.path.join(base_dir, f"{model_cls}_{timestamp}.mp4")


gushiqiao's avatar
gushiqiao committed
136
137
138
139
140
141
142
143
144
145
def is_fp8_supported_gpu():
    if not torch.cuda.is_available():
        return False
    compute_capability = torch.cuda.get_device_capability(0)
    major, minor = compute_capability
    return (major == 8 and minor == 9) or (major >= 9)


global_runner = None
current_config = None
gushiqiao's avatar
gushiqiao committed
146
147
148
149
150
cur_dit_quant_scheme = None
cur_clip_quant_scheme = None
cur_t5_quant_scheme = None
cur_precision_mode = None
cur_enable_teacache = None
gushiqiao's avatar
gushiqiao committed
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166

available_quant_ops = get_available_quant_ops()
quant_op_choices = []
for op_name, is_installed in available_quant_ops:
    status_text = "✅ Installed" if is_installed else "❌ Not Installed"
    display_text = f"{op_name} ({status_text})"
    quant_op_choices.append((op_name, display_text))

available_attn_ops = get_available_attn_ops()
attn_op_choices = []
for op_name, is_installed in available_attn_ops:
    status_text = "✅ Installed" if is_installed else "❌ Not Installed"
    display_text = f"{op_name} ({status_text})"
    attn_op_choices.append((op_name, display_text))


gushiqiao's avatar
gushiqiao committed
167
168
169
170
171
172
173
174
175
176
177
178
def run_inference(
    prompt,
    negative_prompt,
    save_video_path,
    torch_compile,
    infer_steps,
    num_frames,
    resolution,
    seed,
    sample_shift,
    enable_teacache,
    teacache_thresh,
gushiqiao's avatar
gushiqiao committed
179
    use_ret_steps,
gushiqiao's avatar
gushiqiao committed
180
181
182
183
184
185
186
187
188
189
190
191
    enable_cfg,
    cfg_scale,
    dit_quant_scheme,
    t5_quant_scheme,
    clip_quant_scheme,
    fps,
    use_tiny_vae,
    use_tiling_vae,
    lazy_load,
    precision_mode,
    cpu_offload,
    offload_granularity,
gushiqiao's avatar
gushiqiao committed
192
    offload_ratio,
gushiqiao's avatar
gushiqiao committed
193
194
    t5_cpu_offload,
    unload_modules,
gushiqiao's avatar
gushiqiao committed
195
196
197
198
    t5_offload_granularity,
    attention_type,
    quant_op,
    rotary_chunk,
gushiqiao's avatar
gushiqiao committed
199
    rotary_chunk_size,
gushiqiao's avatar
gushiqiao committed
200
    clean_cuda_cache,
gushiqiao's avatar
gushiqiao committed
201
    image_path=None,
gushiqiao's avatar
gushiqiao committed
202
):
gushiqiao's avatar
gushiqiao committed
203
204
    cleanup_memory()

gushiqiao's avatar
gushiqiao committed
205
206
207
    quant_op = quant_op.split("(")[0].strip()
    attention_type = attention_type.split("(")[0].strip()

gushiqiao's avatar
gushiqiao committed
208
    global global_runner, current_config, model_path, task
gushiqiao's avatar
gushiqiao committed
209
    global cur_dit_quant_scheme, cur_clip_quant_scheme, cur_t5_quant_scheme, cur_precision_mode, cur_enable_teacache
gushiqiao's avatar
gushiqiao committed
210
211
212
213
214
215

    if os.path.exists(os.path.join(model_path, "config.json")):
        with open(os.path.join(model_path, "config.json"), "r") as f:
            model_config = json.load(f)

    if task == "t2v":
gushiqiao's avatar
gushiqiao committed
216
        if model_size == "1.3b":
gushiqiao's avatar
gushiqiao committed
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
            # 1.3B
            coefficient = [
                [
                    -5.21862437e04,
                    9.23041404e03,
                    -5.28275948e02,
                    1.36987616e01,
                    -4.99875664e-02,
                ],
                [
                    2.39676752e03,
                    -1.31110545e03,
                    2.01331979e02,
                    -8.29855975e00,
                    1.37887774e-01,
                ],
            ]
        else:
            # 14B
            coefficient = [
                [
                    -3.03318725e05,
                    4.90537029e04,
                    -2.65530556e03,
                    5.87365115e01,
                    -3.15583525e-01,
                ],
                [
                    -5784.54975374,
                    5449.50911966,
                    -1811.16591783,
                    256.27178429,
                    -13.02252404,
                ],
            ]
    elif task == "i2v":
        if resolution in [
            "1280x720",
            "720x1280",
            "1280x544",
            "544x1280",
            "1104x832",
            "832x1104",
            "960x960",
        ]:
            # 720p
            coefficient = [
                [
                    8.10705460e03,
                    2.13393892e03,
                    -3.72934672e02,
                    1.66203073e01,
                    -4.17769401e-02,
                ],
                [-114.36346466, 65.26524496, -18.82220707, 4.91518089, -0.23412683],
            ]
        else:
            # 480p
            coefficient = [
                [
                    2.57151496e05,
                    -3.54229917e04,
                    1.40286849e03,
                    -1.35890334e01,
                    1.32517977e-01,
                ],
                [
                    -3.02331670e02,
                    2.23948934e02,
                    -5.25463970e01,
                    5.87348440e00,
                    -2.01973289e-01,
                ],
            ]

    save_video_path = generate_unique_filename()

    is_dit_quant = dit_quant_scheme != "bf16"
    is_t5_quant = t5_quant_scheme != "bf16"
    if is_t5_quant:
gushiqiao's avatar
gushiqiao committed
297
298
        t5_path = os.path.join(model_path, t5_quant_scheme)
        t5_quant_ckpt = os.path.join(t5_path, f"models_t5_umt5-xxl-enc-{t5_quant_scheme}.pth")
gushiqiao's avatar
gushiqiao committed
299
300
301
    else:
        t5_quant_ckpt = None

gushiqiao's avatar
gushiqiao committed
302
    is_clip_quant = clip_quant_scheme != "fp16"
gushiqiao's avatar
gushiqiao committed
303
    if is_clip_quant:
gushiqiao's avatar
gushiqiao committed
304
305
        clip_path = os.path.join(model_path, clip_quant_scheme)
        clip_quant_ckpt = os.path.join(clip_path, f"clip-{clip_quant_scheme}.pth")
gushiqiao's avatar
gushiqiao committed
306
307
308
    else:
        clip_quant_ckpt = None

gushiqiao's avatar
gushiqiao committed
309
310
    needs_reinit = (
        lazy_load
gushiqiao's avatar
gushiqiao committed
311
        or unload_modules
gushiqiao's avatar
gushiqiao committed
312
313
314
315
316
317
318
319
320
321
322
323
324
        or global_runner is None
        or current_config is None
        or cur_dit_quant_scheme is None
        or cur_dit_quant_scheme != dit_quant_scheme
        or cur_clip_quant_scheme is None
        or cur_clip_quant_scheme != clip_quant_scheme
        or cur_t5_quant_scheme is None
        or cur_t5_quant_scheme != t5_quant_scheme
        or cur_precision_mode is None
        or cur_precision_mode != precision_mode
        or cur_enable_teacache is None
        or cur_enable_teacache != enable_teacache
    )
gushiqiao's avatar
gushiqiao committed
325
326
327
328
329
330
331
332
333
334
335
336
337
338

    if torch_compile:
        os.environ["ENABLE_GRAPH_MODE"] = "true"
    else:
        os.environ["ENABLE_GRAPH_MODE"] = "false"
    if precision_mode == "bf16":
        os.environ["DTYPE"] = "BF16"
    else:
        os.environ.pop("DTYPE", None)

    if is_dit_quant:
        if quant_op == "vllm":
            mm_type = f"W-{dit_quant_scheme}-channel-sym-A-{dit_quant_scheme}-channel-sym-dynamic-Vllm"
        elif quant_op == "sgl":
gushiqiao's avatar
gushiqiao committed
339
340
341
342
            if dit_quant_scheme == "int8":
                mm_type = f"W-{dit_quant_scheme}-channel-sym-A-{dit_quant_scheme}-channel-sym-dynamic-Sgl-ActVllm"
            else:
                mm_type = f"W-{dit_quant_scheme}-channel-sym-A-{dit_quant_scheme}-channel-sym-dynamic-Sgl"
gushiqiao's avatar
gushiqiao committed
343
344
        elif quant_op == "q8f":
            mm_type = f"W-{dit_quant_scheme}-channel-sym-A-{dit_quant_scheme}-channel-sym-dynamic-Q8F"
gushiqiao's avatar
gushiqiao committed
345
346

        dit_quantized_ckpt = os.path.join(model_path, dit_quant_scheme)
gushiqiao's avatar
gushiqiao committed
347
348
349
        if os.path.exists(os.path.join(dit_quantized_ckpt, "config.json")):
            with open(os.path.join(dit_quantized_ckpt, "config.json"), "r") as f:
                quant_model_config = json.load(f)
gushiqiao's avatar
gushiqiao committed
350
351
        else:
            quant_model_config = {}
gushiqiao's avatar
gushiqiao committed
352
353
    else:
        mm_type = "Default"
gushiqiao's avatar
gushiqiao committed
354
        dit_quantized_ckpt = None
gushiqiao's avatar
gushiqiao committed
355
        quant_model_config = {}
gushiqiao's avatar
gushiqiao committed
356
357
358
359
360
361

    config = {
        "infer_steps": infer_steps,
        "target_video_length": num_frames,
        "target_width": int(resolution.split("x")[0]),
        "target_height": int(resolution.split("x")[1]),
gushiqiao's avatar
gushiqiao committed
362
363
364
        "self_attn_1_type": attention_type,
        "cross_attn_1_type": attention_type,
        "cross_attn_2_type": attention_type,
gushiqiao's avatar
gushiqiao committed
365
366
367
368
369
370
        "seed": seed,
        "enable_cfg": enable_cfg,
        "sample_guide_scale": cfg_scale,
        "sample_shift": sample_shift,
        "cpu_offload": cpu_offload,
        "offload_granularity": offload_granularity,
gushiqiao's avatar
gushiqiao committed
371
        "offload_ratio": offload_ratio,
gushiqiao's avatar
gushiqiao committed
372
        "t5_offload_granularity": t5_offload_granularity,
gushiqiao's avatar
gushiqiao committed
373
        "dit_quantized_ckpt": dit_quantized_ckpt,
gushiqiao's avatar
gushiqiao committed
374
375
376
377
378
        "mm_config": {
            "mm_type": mm_type,
        },
        "fps": fps,
        "feature_caching": "Tea" if enable_teacache else "NoCaching",
gushiqiao's avatar
gushiqiao committed
379
380
        "coefficients": coefficient[0] if use_ret_steps else coefficient[1],
        "use_ret_steps": use_ret_steps,
gushiqiao's avatar
gushiqiao committed
381
        "teacache_thresh": teacache_thresh,
gushiqiao's avatar
gushiqiao committed
382
383
        "t5_cpu_offload": t5_cpu_offload,
        "unload_modules": unload_modules,
gushiqiao's avatar
gushiqiao committed
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
        "t5_quantized": is_t5_quant,
        "t5_quantized_ckpt": t5_quant_ckpt,
        "t5_quant_scheme": t5_quant_scheme,
        "clip_quantized": is_clip_quant,
        "clip_quantized_ckpt": clip_quant_ckpt,
        "clip_quant_scheme": clip_quant_scheme,
        "use_tiling_vae": use_tiling_vae,
        "tiny_vae": use_tiny_vae,
        "tiny_vae_path": (os.path.join(model_path, "taew2_1.pth") if use_tiny_vae else None),
        "lazy_load": lazy_load,
        "do_mm_calib": False,
        "parallel_attn_type": None,
        "parallel_vae": False,
        "max_area": False,
        "vae_stride": (4, 8, 8),
        "patch_size": (1, 2, 2),
        "lora_path": None,
        "strength_model": 1.0,
        "use_prompt_enhancer": False,
        "text_len": 512,
        "rotary_chunk": rotary_chunk,
gushiqiao's avatar
gushiqiao committed
405
        "rotary_chunk_size": rotary_chunk_size,
gushiqiao's avatar
gushiqiao committed
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
        "clean_cuda_cache": clean_cuda_cache,
    }

    args = argparse.Namespace(
        model_cls=model_cls,
        task=task,
        model_path=model_path,
        prompt_enhancer=None,
        prompt=prompt,
        negative_prompt=negative_prompt,
        image_path=image_path,
        save_video_path=save_video_path,
    )

    config.update({k: v for k, v in vars(args).items()})
    config = EasyDict(config)
    config["mode"] = "infer"
    config.update(model_config)
gushiqiao's avatar
gushiqiao committed
424
    config.update(quant_model_config)
gushiqiao's avatar
gushiqiao committed
425
426
427
428

    logger.info(f"Using model: {model_path}")
    logger.info(f"Inference configuration:\n{json.dumps(config, indent=4, ensure_ascii=False)}")

gushiqiao's avatar
gushiqiao committed
429
    # Initialize or reuse the runner
gushiqiao's avatar
gushiqiao committed
430
431
432
433
434
435
436
    runner = global_runner
    if needs_reinit:
        if runner is not None:
            del runner
            torch.cuda.empty_cache()
            gc.collect()

gushiqiao's avatar
gushiqiao committed
437
438
        from lightx2v.infer import init_runner  # noqa

gushiqiao's avatar
gushiqiao committed
439
440
        runner = init_runner(config)
        current_config = config
gushiqiao's avatar
gushiqiao committed
441
442
443
444
445
        cur_dit_quant_scheme = dit_quant_scheme
        cur_clip_quant_scheme = clip_quant_scheme
        cur_t5_quant_scheme = t5_quant_scheme
        cur_precision_mode = precision_mode
        cur_enable_teacache = enable_teacache
gushiqiao's avatar
gushiqiao committed
446
447
448

        if not lazy_load:
            global_runner = runner
gushiqiao's avatar
gushiqiao committed
449
450
    else:
        runner.config = config
gushiqiao's avatar
gushiqiao committed
451
452
453

    asyncio.run(runner.run_pipeline())

gushiqiao's avatar
gushiqiao committed
454
455
456
457
458
459
460
461
462
    del config, args, model_config, quant_model_config
    if "dit_quantized_ckpt" in locals():
        del dit_quantized_ckpt
    if "t5_quant_ckpt" in locals():
        del t5_quant_ckpt
    if "clip_quant_ckpt" in locals():
        del clip_quant_ckpt

    cleanup_memory()
gushiqiao's avatar
gushiqiao committed
463
464
465
466

    return save_video_path


gushiqiao's avatar
gushiqiao committed
467
468
469
470
471
472
def handle_lazy_load_change(lazy_load_enabled):
    """Handle lazy_load checkbox change to automatically enable unload_modules"""
    return gr.update(value=lazy_load_enabled)


def auto_configure(enable_auto_config, resolution):
gushiqiao's avatar
gushiqiao committed
473
474
475
476
477
478
479
480
481
    default_config = {
        "torch_compile_val": False,
        "lazy_load_val": False,
        "rotary_chunk_val": False,
        "rotary_chunk_size_val": 100,
        "clean_cuda_cache_val": False,
        "cpu_offload_val": False,
        "offload_granularity_val": "block",
        "offload_ratio_val": 1,
gushiqiao's avatar
gushiqiao committed
482
483
        "t5_cpu_offload_val": False,
        "unload_modules_val": False,
gushiqiao's avatar
gushiqiao committed
484
485
486
487
488
489
490
491
492
493
494
495
496
        "t5_offload_granularity_val": "model",
        "attention_type_val": attn_op_choices[0][1],
        "quant_op_val": quant_op_choices[0][1],
        "dit_quant_scheme_val": "bf16",
        "t5_quant_scheme_val": "bf16",
        "clip_quant_scheme_val": "fp16",
        "precision_mode_val": "fp32",
        "use_tiny_vae_val": False,
        "use_tiling_vae_val": False,
        "enable_teacache_val": False,
        "teacache_thresh_val": 0.26,
        "use_ret_steps_val": False,
    }
gushiqiao's avatar
gushiqiao committed
497

gushiqiao's avatar
gushiqiao committed
498
499
500
501
502
503
504
505
506
507
508
    if not enable_auto_config:
        return tuple(gr.update(value=default_config[key]) for key in default_config)

    gpu_memory = round(get_gpu_memory())
    cpu_memory = round(get_cpu_memory())

    if is_fp8_supported_gpu():
        quant_type = "fp8"
    else:
        quant_type = "int8"

gushiqiao's avatar
gushiqiao committed
509
    attn_priority = ["sage_attn2", "flash_attn3", "flash_attn2", "torch_sdpa"]
gushiqiao's avatar
gushiqiao committed
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
    quant_op_priority = ["sgl", "vllm", "q8f"]

    for op in attn_priority:
        if dict(available_attn_ops).get(op):
            default_config["attention_type_val"] = dict(attn_op_choices)[op]
            break

    for op in quant_op_priority:
        if dict(available_quant_ops).get(op):
            default_config["quant_op_val"] = dict(quant_op_choices)[op]
            break

    if resolution in [
        "1280x720",
        "720x1280",
        "1280x544",
        "544x1280",
        "1104x832",
        "832x1104",
        "960x960",
    ]:
        res = "720p"
    elif resolution in [
        "960x544",
        "544x960",
    ]:
        res = "540p"
    else:
        res = "480p"

gushiqiao's avatar
gushiqiao committed
540
    if model_size == "14b":
gushiqiao's avatar
gushiqiao committed
541
542
543
544
545
546
547
        is_14b = True
    else:
        is_14b = False

    if res == "720p" and is_14b:
        gpu_rules = [
            (80, {}),
gushiqiao's avatar
gushiqiao committed
548
549
550
            (48, {"cpu_offload_val": True, "offload_ratio_val": 0.5, "t5_cpu_offload_val": True}),
            (40, {"cpu_offload_val": True, "offload_ratio_val": 0.8, "t5_cpu_offload_val": True}),
            (32, {"cpu_offload_val": True, "offload_ratio_val": 1, "t5_cpu_offload_val": True}),
gushiqiao's avatar
gushiqiao committed
551
552
553
554
            (
                24,
                {
                    "cpu_offload_val": True,
gushiqiao's avatar
gushiqiao committed
555
                    "t5_cpu_offload_val": True,
gushiqiao's avatar
gushiqiao committed
556
557
558
559
560
561
562
563
564
565
                    "offload_ratio_val": 1,
                    "t5_offload_granularity_val": "block",
                    "precision_mode_val": "bf16",
                    "use_tiling_vae_val": True,
                },
            ),
            (
                16,
                {
                    "cpu_offload_val": True,
gushiqiao's avatar
gushiqiao committed
566
                    "t5_cpu_offload_val": True,
gushiqiao's avatar
gushiqiao committed
567
568
569
570
571
572
573
574
575
576
577
578
579
                    "offload_ratio_val": 1,
                    "t5_offload_granularity_val": "block",
                    "precision_mode_val": "bf16",
                    "use_tiling_vae_val": True,
                    "offload_granularity_val": "phase",
                    "rotary_chunk_val": True,
                    "rotary_chunk_size_val": 100,
                },
            ),
            (
                12,
                {
                    "cpu_offload_val": True,
gushiqiao's avatar
gushiqiao committed
580
                    "t5_cpu_offload_val": True,
gushiqiao's avatar
gushiqiao committed
581
582
583
584
585
586
587
588
                    "offload_ratio_val": 1,
                    "t5_offload_granularity_val": "block",
                    "precision_mode_val": "bf16",
                    "use_tiling_vae_val": True,
                    "offload_granularity_val": "phase",
                    "rotary_chunk_val": True,
                    "rotary_chunk_size_val": 100,
                    "clean_cuda_cache_val": True,
gushiqiao's avatar
gushiqiao committed
589
                    "use_tiny_vae_val": True,
gushiqiao's avatar
gushiqiao committed
590
591
592
593
594
595
                },
            ),
            (
                8,
                {
                    "cpu_offload_val": True,
gushiqiao's avatar
gushiqiao committed
596
                    "t5_cpu_offload_val": True,
gushiqiao's avatar
gushiqiao committed
597
598
599
600
601
602
603
604
605
606
607
608
                    "offload_ratio_val": 1,
                    "t5_offload_granularity_val": "block",
                    "precision_mode_val": "bf16",
                    "use_tiling_vae_val": True,
                    "offload_granularity_val": "phase",
                    "rotary_chunk_val": True,
                    "rotary_chunk_size_val": 100,
                    "clean_cuda_cache_val": True,
                    "t5_quant_scheme_val": quant_type,
                    "clip_quant_scheme_val": quant_type,
                    "dit_quant_scheme_val": quant_type,
                    "lazy_load_val": True,
gushiqiao's avatar
gushiqiao committed
609
                    "unload_modules_val": True,
gushiqiao's avatar
gushiqiao committed
610
                    "use_tiny_vae_val": True,
gushiqiao's avatar
gushiqiao committed
611
612
613
614
615
616
617
                },
            ),
        ]

    elif is_14b:
        gpu_rules = [
            (80, {}),
gushiqiao's avatar
gushiqiao committed
618
619
620
            (48, {"cpu_offload_val": True, "offload_ratio_val": 0.2, "t5_cpu_offload_val": True}),
            (40, {"cpu_offload_val": True, "offload_ratio_val": 0.5, "t5_cpu_offload_val": True}),
            (24, {"cpu_offload_val": True, "offload_ratio_val": 0.8, "t5_cpu_offload_val": True}),
gushiqiao's avatar
gushiqiao committed
621
622
623
624
            (
                16,
                {
                    "cpu_offload_val": True,
gushiqiao's avatar
gushiqiao committed
625
                    "t5_cpu_offload_val": True,
gushiqiao's avatar
gushiqiao committed
626
627
628
629
630
631
632
633
634
635
636
637
                    "offload_ratio_val": 1,
                    "t5_offload_granularity_val": "block",
                    "precision_mode_val": "bf16",
                    "use_tiling_vae_val": True,
                    "offload_granularity_val": "block",
                },
            ),
            (
                8,
                (
                    {
                        "cpu_offload_val": True,
gushiqiao's avatar
gushiqiao committed
638
                        "t5_cpu_offload_val": True,
gushiqiao's avatar
gushiqiao committed
639
640
641
642
643
644
645
646
647
                        "offload_ratio_val": 1,
                        "t5_offload_granularity_val": "block",
                        "precision_mode_val": "bf16",
                        "use_tiling_vae_val": True,
                        "offload_granularity_val": "phase",
                        "t5_quant_scheme_val": quant_type,
                        "clip_quant_scheme_val": quant_type,
                        "dit_quant_scheme_val": quant_type,
                        "lazy_load_val": True,
gushiqiao's avatar
gushiqiao committed
648
                        "unload_modules_val": True,
gushiqiao's avatar
gushiqiao committed
649
650
                        "rotary_chunk_val": True,
                        "rotary_chunk_size_val": 10000,
gushiqiao's avatar
gushiqiao committed
651
                        "use_tiny_vae_val": True,
gushiqiao's avatar
gushiqiao committed
652
653
654
655
                    }
                    if res == "540p"
                    else {
                        "cpu_offload_val": True,
gushiqiao's avatar
gushiqiao committed
656
                        "t5_cpu_offload_val": True,
gushiqiao's avatar
gushiqiao committed
657
658
659
660
661
662
663
664
665
                        "offload_ratio_val": 1,
                        "t5_offload_granularity_val": "block",
                        "precision_mode_val": "bf16",
                        "use_tiling_vae_val": True,
                        "offload_granularity_val": "phase",
                        "t5_quant_scheme_val": quant_type,
                        "clip_quant_scheme_val": quant_type,
                        "dit_quant_scheme_val": quant_type,
                        "lazy_load_val": True,
gushiqiao's avatar
gushiqiao committed
666
                        "unload_modules_val": True,
gushiqiao's avatar
gushiqiao committed
667
                        "use_tiny_vae_val": True,
gushiqiao's avatar
gushiqiao committed
668
669
670
671
                    }
                ),
            ),
        ]
gushiqiao's avatar
gushiqiao committed
672

gushiqiao's avatar
gushiqiao committed
673
    else:
gushiqiao's avatar
gushiqiao committed
674
675
676
677
678
679
680
681
682
683
684
        gpu_rules = [
            (24, {}),
            (
                8,
                {
                    "t5_cpu_offload_val": True,
                    "t5_offload_granularity_val": "block",
                    "t5_quant_scheme_val": quant_type,
                },
            ),
        ]
gushiqiao's avatar
gushiqiao committed
685

gushiqiao's avatar
gushiqiao committed
686
687
688
689
690
691
692
    if is_14b:
        cpu_rules = [
            (128, {}),
            (64, {"dit_quant_scheme_val": quant_type}),
            (32, {"dit_quant_scheme_val": quant_type, "lazy_load_val": True}),
            (
                16,
gushiqiao's avatar
gushiqiao committed
693
694
695
696
697
                {
                    "dit_quant_scheme_val": quant_type,
                    "t5_quant_scheme_val": quant_type,
                    "clip_quant_scheme_val": quant_type,
                    "lazy_load_val": True,
gushiqiao's avatar
gushiqiao committed
698
                    "unload_modules_val": True,
gushiqiao's avatar
gushiqiao committed
699
                },
gushiqiao's avatar
gushiqiao committed
700
701
            ),
        ]
gushiqiao's avatar
gushiqiao committed
702
    else:
gushiqiao's avatar
gushiqiao committed
703
704
705
706
707
708
709
710
711
712
713
        cpu_rules = [
            (64, {}),
            (
                16,
                {
                    "t5_quant_scheme_val": quant_type,
                    "unload_modules_val": True,
                    "use_tiny_vae_val": True,
                },
            ),
        ]
gushiqiao's avatar
gushiqiao committed
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728

    for threshold, updates in gpu_rules:
        if gpu_memory >= threshold:
            default_config.update(updates)
            break

    for threshold, updates in cpu_rules:
        if cpu_memory >= threshold:
            default_config.update(updates)
            break

    return tuple(gr.update(value=default_config[key]) for key in default_config)


def main():
gushiqiao's avatar
gushiqiao committed
729
    def toggle_image_input(task):
gushiqiao's avatar
gushiqiao committed
730
        return gr.update(visible=(task == "Image to Video"))
gushiqiao's avatar
gushiqiao committed
731
732

    with gr.Blocks(
gushiqiao's avatar
gushiqiao committed
733
        title="Lightx2v (Lightweight Video Inference and Generation Engine)",
gushiqiao's avatar
gushiqiao committed
734
735
736
737
738
739
740
741
742
        css="""
        .main-content { max-width: 1400px; margin: auto; }
        .output-video { max-height: 650px; }
        .warning { color: #ff6b6b; font-weight: bold; }
        .advanced-options { background: #f9f9ff; border-radius: 10px; padding: 15px; }
        .tab-button { font-size: 16px; padding: 10px 20px; }
    """,
    ) as demo:
        gr.Markdown(f"# 🎬 {model_cls} Video Generator")
gushiqiao's avatar
gushiqiao committed
743
        gr.Markdown(f"### Using Model: {model_path}")
gushiqiao's avatar
gushiqiao committed
744
745
746
747
748
749
750
751

        with gr.Tabs() as tabs:
            with gr.Tab("Basic Settings", id=1):
                with gr.Row():
                    with gr.Column(scale=4):
                        with gr.Group():
                            gr.Markdown("## 📥 Input Parameters")

gushiqiao's avatar
gushiqiao committed
752
753
754
755
756
757
758
759
760
                            if task == "i2v":
                                with gr.Row():
                                    image_path = gr.Image(
                                        label="Input Image",
                                        type="filepath",
                                        height=300,
                                        interactive=True,
                                        visible=True,
                                    )
gushiqiao's avatar
gushiqiao committed
761
762
763
764
765
766
767
768
769
770
771
772
773

                            with gr.Row():
                                with gr.Column():
                                    prompt = gr.Textbox(
                                        label="Prompt",
                                        lines=3,
                                        placeholder="Describe the video content...",
                                        max_lines=5,
                                    )
                                with gr.Column():
                                    negative_prompt = gr.Textbox(
                                        label="Negative Prompt",
                                        lines=3,
gushiqiao's avatar
gushiqiao committed
774
                                        placeholder="What you don't want to appear in the video...",
gushiqiao's avatar
gushiqiao committed
775
                                        max_lines=5,
gushiqiao's avatar
gushiqiao committed
776
                                        value="镜头晃动,色调艳丽,过曝,静态,细节模糊不清,字幕,风格,作品,画作,画面,静止,整体发灰,最差质量,低质量,JPEG压缩残留,丑陋的,残缺的,多余的手指,画得不好的手部,画得不好的脸部,畸形的,毁容的,形态畸形的肢体,手指融合,静止不动的画面,杂乱的背景,三条腿,背景人很多,倒着走",
gushiqiao's avatar
gushiqiao committed
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
                                    )
                                with gr.Column():
                                    resolution = gr.Dropdown(
                                        choices=[
                                            # 720p
                                            ("1280x720 (16:9, 720p)", "1280x720"),
                                            ("720x1280 (9:16, 720p)", "720x1280"),
                                            ("1280x544 (21:9, 720p)", "1280x544"),
                                            ("544x1280 (9:21, 720p)", "544x1280"),
                                            ("1104x832 (4:3, 720p)", "1104x832"),
                                            ("832x1104 (3:4, 720p)", "832x1104"),
                                            ("960x960 (1:1, 720p)", "960x960"),
                                            # 480p
                                            ("960x544 (16:9, 540p)", "960x544"),
                                            ("544x960 (9:16, 540p)", "544x960"),
                                            ("832x480 (16:9, 480p)", "832x480"),
                                            ("480x832 (9:16, 480p)", "480x832"),
                                            ("832x624 (4:3, 480p)", "832x624"),
                                            ("624x832 (3:4, 480p)", "624x832"),
                                            ("720x720 (1:1, 480p)", "720x720"),
                                            ("512x512 (1:1, 480p)", "512x512"),
                                        ],
gushiqiao's avatar
gushiqiao committed
799
800
                                        value="832x480",
                                        label="Maximum Resolution",
gushiqiao's avatar
gushiqiao committed
801
                                    )
gushiqiao's avatar
gushiqiao committed
802
803
804
805
806
807
808

                                with gr.Column():
                                    enable_auto_config = gr.Checkbox(
                                        label="Auto-configure Inference Options",
                                        value=False,
                                        info="Automatically optimize GPU settings to match the current resolution. After changing the resolution, please re-check this option to prevent potential performance degradation or runtime errors.",
                                    )
gushiqiao's avatar
gushiqiao committed
809
                                with gr.Column(scale=9):
gushiqiao's avatar
gushiqiao committed
810
811
                                    seed = gr.Slider(
                                        label="Random Seed",
gushiqiao's avatar
gushiqiao committed
812
813
                                        minimum=0,
                                        maximum=MAX_NUMPY_SEED,
gushiqiao's avatar
gushiqiao committed
814
                                        step=1,
gushiqiao's avatar
gushiqiao committed
815
                                        value=generate_random_seed(),
gushiqiao's avatar
gushiqiao committed
816
                                    )
gushiqiao's avatar
gushiqiao committed
817
818
819
820
821
822
                                with gr.Column(scale=1):
                                    randomize_btn = gr.Button("🎲 Randomize", variant="secondary")

                                randomize_btn.click(fn=generate_random_seed, inputs=None, outputs=seed)

                                with gr.Column():
gushiqiao's avatar
gushiqiao committed
823
824
825
826
827
                                    infer_steps = gr.Slider(
                                        label="Inference Steps",
                                        minimum=1,
                                        maximum=100,
                                        step=1,
gushiqiao's avatar
gushiqiao committed
828
829
                                        value=40,
                                        info="Number of inference steps for video generation. Increasing steps may improve quality but reduce speed.",
gushiqiao's avatar
gushiqiao committed
830
831
                                    )

gushiqiao's avatar
gushiqiao committed
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
                            enable_cfg = gr.Checkbox(
                                label="Enable Classifier-Free Guidance",
                                value=True,
                                info="Enable classifier-free guidance to control prompt strength",
                            )
                            cfg_scale = gr.Slider(
                                label="CFG Scale Factor",
                                minimum=1,
                                maximum=10,
                                step=1,
                                value=5,
                                info="Controls the influence strength of the prompt. Higher values give more influence to the prompt.",
                            )
                            sample_shift = gr.Slider(
                                label="Distribution Shift",
                                value=5,
                                minimum=0,
                                maximum=10,
                                step=1,
                                info="Controls the degree of distribution shift for samples. Larger values indicate more significant shifts.",
gushiqiao's avatar
gushiqiao committed
852
853
                            )

gushiqiao's avatar
gushiqiao committed
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
                            fps = gr.Slider(
                                label="Frames Per Second (FPS)",
                                minimum=8,
                                maximum=30,
                                step=1,
                                value=16,
                                info="Frames per second of the video. Higher FPS results in smoother videos.",
                            )
                            num_frames = gr.Slider(
                                label="Total Frames",
                                minimum=16,
                                maximum=120,
                                step=1,
                                value=81,
                                info="Total number of frames in the video. More frames result in longer videos.",
                            )
gushiqiao's avatar
gushiqiao committed
870

gushiqiao's avatar
gushiqiao committed
871
872
873
874
875
                        save_video_path = gr.Textbox(
                            label="Output Video Path",
                            value=generate_unique_filename(),
                            info="Must include .mp4 extension. If left blank or using the default value, a unique filename will be automatically generated.",
                        )
gushiqiao's avatar
gushiqiao committed
876
877
878
879
880
881
882
883
884
885
                    with gr.Column(scale=6):
                        gr.Markdown("## 📤 Generated Video")
                        output_video = gr.Video(
                            label="Result",
                            height=624,
                            width=360,
                            autoplay=True,
                            elem_classes=["output-video"],
                        )

gushiqiao's avatar
gushiqiao committed
886
                        infer_btn = gr.Button("Generate Video", variant="primary", size="lg")
gushiqiao's avatar
gushiqiao committed
887

gushiqiao's avatar
gushiqiao committed
888
889
            with gr.Tab("⚙️ Advanced Options", id=2):
                with gr.Group(elem_classes="advanced-options"):
gushiqiao's avatar
gushiqiao committed
890
                    gr.Markdown("### GPU Memory Optimization")
gushiqiao's avatar
gushiqiao committed
891
                    with gr.Row():
gushiqiao's avatar
gushiqiao committed
892
893
                        rotary_chunk = gr.Checkbox(
                            label="Chunked Rotary Position Embedding",
gushiqiao's avatar
gushiqiao committed
894
                            value=False,
gushiqiao's avatar
gushiqiao committed
895
                            info="When enabled, processes rotary position embeddings in chunks to save GPU memory.",
gushiqiao's avatar
gushiqiao committed
896
897
                        )

gushiqiao's avatar
gushiqiao committed
898
899
900
901
902
903
904
                        rotary_chunk_size = gr.Slider(
                            label="Rotary Embedding Chunk Size",
                            value=100,
                            minimum=100,
                            maximum=10000,
                            step=100,
                            info="Controls the chunk size for applying rotary embeddings. Larger values may improve performance but increase memory usage. Only effective if 'rotary_chunk' is checked.",
gushiqiao's avatar
gushiqiao committed
905
906
                        )

gushiqiao's avatar
gushiqiao committed
907
908
909
910
911
                        unload_modules = gr.Checkbox(
                            label="Unload Modules",
                            value=False,
                            info="Unload modules (T5, CLIP, DIT, etc.) after inference to reduce GPU/CPU memory usage",
                        )
gushiqiao's avatar
gushiqiao committed
912
913
914
                        clean_cuda_cache = gr.Checkbox(
                            label="Clean CUDA Memory Cache",
                            value=False,
gushiqiao's avatar
gushiqiao committed
915
                            info="When enabled, frees up GPU memory promptly but slows down inference.",
gushiqiao's avatar
gushiqiao committed
916
917
                        )

gushiqiao's avatar
gushiqiao committed
918
                    gr.Markdown("### Asynchronous Offloading")
gushiqiao's avatar
gushiqiao committed
919
920
                    with gr.Row():
                        cpu_offload = gr.Checkbox(
gushiqiao's avatar
gushiqiao committed
921
922
923
924
925
926
927
                            label="CPU Offloading",
                            value=False,
                            info="Offload parts of the model computation from GPU to CPU to reduce GPU memory usage",
                        )

                        lazy_load = gr.Checkbox(
                            label="Enable Lazy Loading",
gushiqiao's avatar
gushiqiao committed
928
                            value=False,
gushiqiao's avatar
gushiqiao committed
929
                            info="Lazy load model components during inference. Requires CPU loading and DIT quantization.",
gushiqiao's avatar
gushiqiao committed
930
                        )
gushiqiao's avatar
gushiqiao committed
931

gushiqiao's avatar
gushiqiao committed
932
933
934
                        offload_granularity = gr.Dropdown(
                            label="Dit Offload Granularity",
                            choices=["block", "phase"],
gushiqiao's avatar
gushiqiao committed
935
936
937
938
939
940
941
942
943
944
                            value="phase",
                            info="Sets Dit model offloading granularity: blocks or computational phases",
                        )
                        offload_ratio = gr.Slider(
                            label="Offload ratio for Dit model",
                            minimum=0.0,
                            maximum=1.0,
                            step=0.1,
                            value=1.0,
                            info="Controls how much of the Dit model is offloaded to the CPU",
gushiqiao's avatar
gushiqiao committed
945
                        )
gushiqiao's avatar
gushiqiao committed
946
947
948
949
950
951
                        t5_cpu_offload = gr.Checkbox(
                            label="T5 CPU Offloading",
                            value=False,
                            info="Offload the T5 Encoder model to CPU to reduce GPU memory usage",
                        )

gushiqiao's avatar
gushiqiao committed
952
953
954
                        t5_offload_granularity = gr.Dropdown(
                            label="T5 Encoder Offload Granularity",
                            choices=["model", "block"],
gushiqiao's avatar
gushiqiao committed
955
956
                            value="model",
                            info="Controls the granularity when offloading the T5 Encoder model to CPU",
gushiqiao's avatar
gushiqiao committed
957
958
959
960
                        )

                    gr.Markdown("### Low-Precision Quantization")
                    with gr.Row():
gushiqiao's avatar
gushiqiao committed
961
962
963
964
965
966
                        torch_compile = gr.Checkbox(
                            label="Torch Compile",
                            value=False,
                            info="Use torch.compile to accelerate the inference process",
                        )

gushiqiao's avatar
gushiqiao committed
967
968
                        attention_type = gr.Dropdown(
                            label="Attention Operator",
gushiqiao's avatar
gushiqiao committed
969
970
971
                            choices=[op[1] for op in attn_op_choices],
                            value=attn_op_choices[0][1],
                            info="Use appropriate attention operators to accelerate inference",
gushiqiao's avatar
gushiqiao committed
972
973
                        )
                        quant_op = gr.Dropdown(
gushiqiao's avatar
gushiqiao committed
974
975
976
977
978
                            label="Quantization Matmul Operator",
                            choices=[op[1] for op in quant_op_choices],
                            value=quant_op_choices[0][1],
                            info="Select the quantization matrix multiplication operator to accelerate inference",
                            interactive=True,
gushiqiao's avatar
gushiqiao committed
979
980
981
982
983
                        )
                        dit_quant_scheme = gr.Dropdown(
                            label="Dit",
                            choices=["fp8", "int8", "bf16"],
                            value="bf16",
gushiqiao's avatar
gushiqiao committed
984
                            info="Quantization precision for the Dit model",
gushiqiao's avatar
gushiqiao committed
985
986
987
988
989
                        )
                        t5_quant_scheme = gr.Dropdown(
                            label="T5 Encoder",
                            choices=["fp8", "int8", "bf16"],
                            value="bf16",
gushiqiao's avatar
gushiqiao committed
990
                            info="Quantization precision for the T5 Encoder model",
gushiqiao's avatar
gushiqiao committed
991
992
993
994
995
                        )
                        clip_quant_scheme = gr.Dropdown(
                            label="Clip Encoder",
                            choices=["fp8", "int8", "fp16"],
                            value="fp16",
gushiqiao's avatar
gushiqiao committed
996
                            info="Quantization precision for the Clip Encoder",
gushiqiao's avatar
gushiqiao committed
997
998
                        )
                        precision_mode = gr.Dropdown(
gushiqiao's avatar
gushiqiao committed
999
                            label="Precision Mode for Sensitive Layers",
gushiqiao's avatar
gushiqiao committed
1000
                            choices=["fp32", "bf16"],
gushiqiao's avatar
gushiqiao committed
1001
                            value="fp32",
gushiqiao's avatar
gushiqiao committed
1002
                            info="Select the numerical precision for critical model components like normalization and embedding layers. FP32 offers higher accuracy, while BF16 improves performance on compatible hardware.",
gushiqiao's avatar
gushiqiao committed
1003
1004
1005
1006
1007
                        )

                    gr.Markdown("### Variational Autoencoder (VAE)")
                    with gr.Row():
                        use_tiny_vae = gr.Checkbox(
gushiqiao's avatar
gushiqiao committed
1008
                            label="Use Tiny VAE",
gushiqiao's avatar
gushiqiao committed
1009
1010
1011
1012
                            value=False,
                            info="Use a lightweight VAE model to accelerate the decoding process",
                        )
                        use_tiling_vae = gr.Checkbox(
gushiqiao's avatar
gushiqiao committed
1013
                            label="VAE Tiling Inference",
gushiqiao's avatar
gushiqiao committed
1014
                            value=False,
gushiqiao's avatar
gushiqiao committed
1015
                            info="Use VAE tiling inference to reduce GPU memory usage",
gushiqiao's avatar
gushiqiao committed
1016
1017
1018
1019
1020
                        )

                    gr.Markdown("### Feature Caching")
                    with gr.Row():
                        enable_teacache = gr.Checkbox(
gushiqiao's avatar
gushiqiao committed
1021
                            label="Tea Cache",
gushiqiao's avatar
gushiqiao committed
1022
1023
1024
1025
1026
1027
1028
1029
                            value=False,
                            info="Cache features during inference to reduce the number of inference steps",
                        )
                        teacache_thresh = gr.Slider(
                            label="Tea Cache Threshold",
                            value=0.26,
                            minimum=0,
                            maximum=1,
gushiqiao's avatar
gushiqiao committed
1030
1031
1032
1033
1034
1035
                            info="Higher acceleration may result in lower quality —— Setting to 0.1 provides ~2.0x acceleration, setting to 0.2 provides ~3.0x acceleration",
                        )
                        use_ret_steps = gr.Checkbox(
                            label="Cache Only Key Steps",
                            value=False,
                            info="When checked, cache is written only at key steps where the scheduler returns results; when unchecked, cache is written at all steps to ensure the highest quality",
gushiqiao's avatar
gushiqiao committed
1036
1037
                        )

gushiqiao's avatar
gushiqiao committed
1038
1039
                enable_auto_config.change(
                    fn=auto_configure,
gushiqiao's avatar
gushiqiao committed
1040
                    inputs=[enable_auto_config, resolution],
gushiqiao's avatar
gushiqiao committed
1041
1042
1043
1044
1045
1046
1047
1048
1049
                    outputs=[
                        torch_compile,
                        lazy_load,
                        rotary_chunk,
                        rotary_chunk_size,
                        clean_cuda_cache,
                        cpu_offload,
                        offload_granularity,
                        offload_ratio,
gushiqiao's avatar
gushiqiao committed
1050
1051
                        t5_cpu_offload,
                        unload_modules,
gushiqiao's avatar
gushiqiao committed
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
                        t5_offload_granularity,
                        attention_type,
                        quant_op,
                        dit_quant_scheme,
                        t5_quant_scheme,
                        clip_quant_scheme,
                        precision_mode,
                        use_tiny_vae,
                        use_tiling_vae,
                        enable_teacache,
                        teacache_thresh,
                        use_ret_steps,
                    ],
                )
gushiqiao's avatar
gushiqiao committed
1066
1067
1068
1069
1070
1071

                lazy_load.change(
                    fn=handle_lazy_load_change,
                    inputs=[lazy_load],
                    outputs=[unload_modules],
                )
gushiqiao's avatar
gushiqiao committed
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
        if task == "i2v":
            infer_btn.click(
                fn=run_inference,
                inputs=[
                    prompt,
                    negative_prompt,
                    save_video_path,
                    torch_compile,
                    infer_steps,
                    num_frames,
                    resolution,
                    seed,
                    sample_shift,
                    enable_teacache,
                    teacache_thresh,
                    use_ret_steps,
                    enable_cfg,
                    cfg_scale,
                    dit_quant_scheme,
                    t5_quant_scheme,
                    clip_quant_scheme,
                    fps,
                    use_tiny_vae,
                    use_tiling_vae,
                    lazy_load,
                    precision_mode,
                    cpu_offload,
                    offload_granularity,
                    offload_ratio,
gushiqiao's avatar
gushiqiao committed
1101
1102
                    t5_cpu_offload,
                    unload_modules,
gushiqiao's avatar
gushiqiao committed
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
                    t5_offload_granularity,
                    attention_type,
                    quant_op,
                    rotary_chunk,
                    rotary_chunk_size,
                    clean_cuda_cache,
                    image_path,
                ],
                outputs=output_video,
            )
        else:
            infer_btn.click(
                fn=run_inference,
                inputs=[
                    prompt,
                    negative_prompt,
                    save_video_path,
                    torch_compile,
                    infer_steps,
                    num_frames,
                    resolution,
                    seed,
                    sample_shift,
                    enable_teacache,
                    teacache_thresh,
                    use_ret_steps,
                    enable_cfg,
                    cfg_scale,
                    dit_quant_scheme,
                    t5_quant_scheme,
                    clip_quant_scheme,
                    fps,
                    use_tiny_vae,
                    use_tiling_vae,
                    lazy_load,
                    precision_mode,
                    cpu_offload,
                    offload_granularity,
                    offload_ratio,
gushiqiao's avatar
gushiqiao committed
1142
1143
                    t5_cpu_offload,
                    unload_modules,
gushiqiao's avatar
gushiqiao committed
1144
1145
1146
1147
1148
1149
1150
1151
1152
                    t5_offload_granularity,
                    attention_type,
                    quant_op,
                    rotary_chunk,
                    rotary_chunk_size,
                    clean_cuda_cache,
                ],
                outputs=output_video,
            )
gushiqiao's avatar
gushiqiao committed
1153
1154
1155
1156
1157

    demo.launch(share=True, server_port=args.server_port, server_name=args.server_name)


if __name__ == "__main__":
gushiqiao's avatar
gushiqiao committed
1158
1159
1160
1161
1162
1163
1164
1165
1166
    parser = argparse.ArgumentParser(description="Light Video Generation")
    parser.add_argument("--model_path", type=str, required=True, help="Model folder path")
    parser.add_argument(
        "--model_cls",
        type=str,
        choices=["wan2.1"],
        default="wan2.1",
        help="Model class to use",
    )
gushiqiao's avatar
gushiqiao committed
1167
    parser.add_argument("--model_size", type=str, required=True, choices=["14b", "1.3b"], help="Model type to use")
gushiqiao's avatar
gushiqiao committed
1168
    parser.add_argument("--task", type=str, required=True, choices=["i2v", "t2v"], help="Specify the task type. 'i2v' for image-to-video translation, 't2v' for text-to-video generation.")
gushiqiao's avatar
gushiqiao committed
1169
1170
1171
1172
    parser.add_argument("--server_port", type=int, default=7862, help="Server port")
    parser.add_argument("--server_name", type=str, default="0.0.0.0", help="Server ip")
    args = parser.parse_args()

gushiqiao's avatar
gushiqiao committed
1173
    global model_path, model_cls, model_size
gushiqiao's avatar
gushiqiao committed
1174
1175
    model_path = args.model_path
    model_cls = args.model_cls
gushiqiao's avatar
gushiqiao committed
1176
    model_size = args.model_size
gushiqiao's avatar
gushiqiao committed
1177
    task = args.task
gushiqiao's avatar
gushiqiao committed
1178

gushiqiao's avatar
gushiqiao committed
1179
    main()