wan_animate_runner.py 17.9 KB
Newer Older
1
2
3
4
5
6
7
import gc
from copy import deepcopy

import cv2
import numpy as np
import torch
import torch.nn.functional as F
gushiqiao's avatar
gushiqiao committed
8
9
10
11
12
13
from loguru import logger

try:
    from decord import VideoReader
except ImportError:
    VideoReader = None
14
    logger.info("If you want to run animate model, please install decord.")
gushiqiao's avatar
gushiqiao committed
15

16
17
18
19

from lightx2v.models.input_encoders.hf.animate.face_encoder import FaceEncoder
from lightx2v.models.input_encoders.hf.animate.motion_encoder import Generator
from lightx2v.models.networks.wan.animate_model import WanAnimateModel
20
from lightx2v.models.networks.wan.lora_adapter import WanLoraWrapper
21
from lightx2v.models.runners.wan.wan_runner import WanRunner
yihuiwen's avatar
yihuiwen committed
22
from lightx2v.server.metrics import monitor_cli
23
24
25
26
27
28
29
30
31
32
from lightx2v.utils.envs import *
from lightx2v.utils.profiler import *
from lightx2v.utils.registry_factory import RUNNER_REGISTER
from lightx2v.utils.utils import load_weights, remove_substrings_from_keys


@RUNNER_REGISTER("wan2.2_animate")
class WanAnimateRunner(WanRunner):
    def __init__(self, config):
        super().__init__(config)
33
        assert self.config["task"] == "animate"
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154

    def inputs_padding(self, array, target_len):
        idx = 0
        flip = False
        target_array = []
        while len(target_array) < target_len:
            target_array.append(deepcopy(array[idx]))
            if flip:
                idx -= 1
            else:
                idx += 1
            if idx == 0 or idx == len(array) - 1:
                flip = not flip
        return target_array[:target_len]

    def get_valid_len(self, real_len, clip_len=81, overlap=1):
        real_clip_len = clip_len - overlap
        last_clip_num = (real_len - overlap) % real_clip_len
        if last_clip_num == 0:
            extra = 0
        else:
            extra = real_clip_len - last_clip_num
        target_len = real_len + extra
        return target_len

    def get_i2v_mask(self, lat_t, lat_h, lat_w, mask_len=1, mask_pixel_values=None, device="cuda"):
        if mask_pixel_values is None:
            msk = torch.zeros(1, (lat_t - 1) * 4 + 1, lat_h, lat_w, dtype=GET_DTYPE(), device=device)
        else:
            msk = mask_pixel_values.clone()
        msk[:, :mask_len] = 1
        msk = torch.concat([torch.repeat_interleave(msk[:, 0:1], repeats=4, dim=1), msk[:, 1:]], dim=1)
        msk = msk.view(1, msk.shape[1] // 4, 4, lat_h, lat_w)
        msk = msk.transpose(1, 2)[0]
        return msk

    def padding_resize(
        self,
        img_ori,
        height=512,
        width=512,
        padding_color=(0, 0, 0),
        interpolation=cv2.INTER_LINEAR,
    ):
        ori_height = img_ori.shape[0]
        ori_width = img_ori.shape[1]
        channel = img_ori.shape[2]

        img_pad = np.zeros((height, width, channel))
        if channel == 1:
            img_pad[:, :, 0] = padding_color[0]
        else:
            img_pad[:, :, 0] = padding_color[0]
            img_pad[:, :, 1] = padding_color[1]
            img_pad[:, :, 2] = padding_color[2]

        if (ori_height / ori_width) > (height / width):
            new_width = int(height / ori_height * ori_width)
            img = cv2.resize(img_ori, (new_width, height), interpolation=interpolation)
            padding = int((width - new_width) / 2)
            if len(img.shape) == 2:
                img = img[:, :, np.newaxis]
            img_pad[:, padding : padding + new_width, :] = img
        else:
            new_height = int(width / ori_width * ori_height)
            img = cv2.resize(img_ori, (width, new_height), interpolation=interpolation)
            padding = int((height - new_height) / 2)
            if len(img.shape) == 2:
                img = img[:, :, np.newaxis]
            img_pad[padding : padding + new_height, :, :] = img

        img_pad = np.uint8(img_pad)

        return img_pad

    def prepare_source(self, src_pose_path, src_face_path, src_ref_path):
        pose_video_reader = VideoReader(src_pose_path)
        pose_len = len(pose_video_reader)
        pose_idxs = list(range(pose_len))
        cond_images = pose_video_reader.get_batch(pose_idxs).asnumpy()

        face_video_reader = VideoReader(src_face_path)
        face_len = len(face_video_reader)
        face_idxs = list(range(face_len))
        face_images = face_video_reader.get_batch(face_idxs).asnumpy()
        height, width = cond_images[0].shape[:2]
        refer_images = cv2.imread(src_ref_path)[..., ::-1]
        refer_images = self.padding_resize(refer_images, height=height, width=width)
        return cond_images, face_images, refer_images

    def prepare_source_for_replace(self, src_bg_path, src_mask_path):
        bg_video_reader = VideoReader(src_bg_path)
        bg_len = len(bg_video_reader)
        bg_idxs = list(range(bg_len))
        bg_images = bg_video_reader.get_batch(bg_idxs).asnumpy()

        mask_video_reader = VideoReader(src_mask_path)
        mask_len = len(mask_video_reader)
        mask_idxs = list(range(mask_len))
        mask_images = mask_video_reader.get_batch(mask_idxs).asnumpy()
        mask_images = mask_images[:, :, :, 0] / 255
        return bg_images, mask_images

    @ProfilingContext4DebugL2("Run Image Encoders")
    def run_image_encoders(
        self,
        conditioning_pixel_values,
        refer_t_pixel_values,
        bg_pixel_values,
        mask_pixel_values,
        face_pixel_values,
    ):
        clip_encoder_out = self.run_image_encoder(self.refer_pixel_values)
        vae_encoder_out, pose_latents = self.run_vae_encoder(
            conditioning_pixel_values,
            refer_t_pixel_values,
            bg_pixel_values,
            mask_pixel_values,
        )
        return {"image_encoder_output": {"clip_encoder_out": clip_encoder_out, "vae_encoder_out": vae_encoder_out, "pose_latents": pose_latents, "face_pixel_values": face_pixel_values}}

yihuiwen's avatar
yihuiwen committed
155
156
157
    @ProfilingContext4DebugL1(
        "Run VAE Encoder",
        recorder_mode=GET_RECORDER_MODE(),
158
        metrics_func=monitor_cli.lightx2v_run_vae_encoder_image_duration,
yihuiwen's avatar
yihuiwen committed
159
160
        metrics_labels=["WanAnimateRunner"],
    )
161
162
163
164
165
166
167
168
169
170
171
    def run_vae_encoder(
        self,
        conditioning_pixel_values,
        refer_t_pixel_values,
        bg_pixel_values,
        mask_pixel_values,
    ):
        H, W = self.refer_pixel_values.shape[-2], self.refer_pixel_values.shape[-1]
        pose_latents = self.vae_encoder.encode(conditioning_pixel_values.unsqueeze(0))  #  c t h w
        ref_latents = self.vae_encoder.encode(self.refer_pixel_values.unsqueeze(1).unsqueeze(0))  #  c t h w

172
        mask_ref = self.get_i2v_mask(1, self.latent_h, self.latent_w, 1)
173
174
175
        y_ref = torch.concat([mask_ref, ref_latents])

        if self.mask_reft_len > 0:
176
            if self.config["replace_flag"]:
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
                y_reft = self.vae_encoder.encode(
                    torch.concat(
                        [
                            refer_t_pixel_values.unsqueeze(2)[0, :, : self.mask_reft_len],
                            bg_pixel_values[:, self.mask_reft_len :],
                        ],
                        dim=1,
                    )
                    .cuda()
                    .unsqueeze(0)
                )
                mask_pixel_values = 1 - mask_pixel_values
                mask_pixel_values = mask_pixel_values.permute(1, 0, 2, 3)
                mask_pixel_values = F.interpolate(mask_pixel_values, size=(H // 8, W // 8), mode="nearest")
                mask_pixel_values = mask_pixel_values[:, 0, :, :]

                msk_reft = self.get_i2v_mask(
194
195
196
                    self.latent_t,
                    self.latent_h,
                    self.latent_w,
197
198
199
200
201
202
203
204
205
206
207
208
                    self.mask_reft_len,
                    mask_pixel_values=mask_pixel_values.unsqueeze(0),
                )
            else:
                y_reft = self.vae_encoder.encode(
                    torch.concat(
                        [
                            torch.nn.functional.interpolate(
                                refer_t_pixel_values.unsqueeze(2)[0, :, : self.mask_reft_len].cpu(),
                                size=(H, W),
                                mode="bicubic",
                            ),
209
                            torch.zeros(3, self.config["target_video_length"] - self.mask_reft_len, H, W, dtype=GET_DTYPE()),
210
211
212
213
214
215
                        ],
                        dim=1,
                    )
                    .cuda()
                    .unsqueeze(0)
                )
216
                msk_reft = self.get_i2v_mask(self.latent_t, self.latent_h, self.latent_w, self.mask_reft_len)
217
        else:
218
            if self.config["replace_flag"]:
219
220
221
222
223
224
                mask_pixel_values = 1 - mask_pixel_values
                mask_pixel_values = mask_pixel_values.permute(1, 0, 2, 3)
                mask_pixel_values = F.interpolate(mask_pixel_values, size=(H // 8, W // 8), mode="nearest")
                mask_pixel_values = mask_pixel_values[:, 0, :, :]
                y_reft = self.vae_encoder.encode(bg_pixel_values.unsqueeze(0))
                msk_reft = self.get_i2v_mask(
225
226
227
                    self.latent_t,
                    self.latent_h,
                    self.latent_w,
228
229
230
231
                    self.mask_reft_len,
                    mask_pixel_values=mask_pixel_values.unsqueeze(0),
                )
            else:
232
233
                y_reft = self.vae_encoder.encode(torch.zeros(1, 3, self.config["target_video_length"] - self.mask_reft_len, H, W, dtype=GET_DTYPE(), device="cuda"))
                msk_reft = self.get_i2v_mask(self.latent_t, self.latent_h, self.latent_w, self.mask_reft_len)
234
235
236
237
238
239
240

        y_reft = torch.concat([msk_reft, y_reft])
        y = torch.concat([y_ref, y_reft], dim=1)

        return y, pose_latents

    def prepare_input(self):
241
242
243
        src_pose_path = self.config["src_pose_path"] if "src_pose_path" in self.config else None
        src_face_path = self.config["src_face_path"] if "src_face_path" in self.config else None
        src_ref_path = self.config["src_ref_images"] if "src_ref_images" in self.config else None
244
245
        self.cond_images, self.face_images, self.refer_images = self.prepare_source(src_pose_path, src_face_path, src_ref_path)
        self.refer_pixel_values = torch.tensor(self.refer_images / 127.5 - 1, dtype=GET_DTYPE(), device="cuda").permute(2, 0, 1)  # chw
246
247
248
249
        self.latent_t = self.config["target_video_length"] // self.config["vae_stride"][0] + 1
        self.latent_h = self.refer_pixel_values.shape[-2] // self.config["vae_stride"][1]
        self.latent_w = self.refer_pixel_values.shape[-1] // self.config["vae_stride"][2]
        self.input_info.latent_shape = [self.config.get("num_channels_latents", 16), self.latent_t + 1, self.latent_h, self.latent_w]
250
251
252
        self.real_frame_len = len(self.cond_images)
        target_len = self.get_valid_len(
            self.real_frame_len,
253
254
            self.config["target_video_length"],
            overlap=self.config["refert_num"] if "refert_num" in self.config else 1,
255
256
257
258
259
        )
        logger.info("real frames: {} target frames: {}".format(self.real_frame_len, target_len))
        self.cond_images = self.inputs_padding(self.cond_images, target_len)
        self.face_images = self.inputs_padding(self.face_images, target_len)

260
261
262
        if self.config["replace_flag"] if "replace_flag" in self.config else False:
            src_bg_path = self.config["src_bg_path"]
            src_mask_path = self.config["src_mask_path"]
263
264
265
266
267
268
            self.bg_images, self.mask_images = self.prepare_source_for_replace(src_bg_path, src_mask_path)
            self.bg_images = self.inputs_padding(self.bg_images, target_len)
            self.mask_images = self.inputs_padding(self.mask_images, target_len)

    def get_video_segment_num(self):
        total_frames = len(self.cond_images)
269
270
        self.move_frames = self.config["target_video_length"] - self.config["refert_num"]
        if total_frames <= self.config["target_video_length"]:
271
272
            self.video_segment_num = 1
        else:
273
            self.video_segment_num = 1 + (total_frames - self.config["target_video_length"] + self.move_frames - 1) // self.move_frames
274
275
276
277
278
279

    def init_run(self):
        self.all_out_frames = []
        self.prepare_input()
        super().init_run()

yihuiwen's avatar
yihuiwen committed
280
281
282
283
284
285
    @ProfilingContext4DebugL1(
        "Run VAE Decoder",
        recorder_mode=GET_RECORDER_MODE(),
        metrics_func=monitor_cli.lightx2v_run_vae_decode_duration,
        metrics_labels=["WanAnimateRunner"],
    )
286
    def run_vae_decoder(self, latents):
287
        if (self.config["lazy_load"] if "lazy_load" in self.config else False) or (self.config["unload_modules"] if "unload_modules" in self.config else False):
288
289
            self.vae_decoder = self.load_vae_decoder()
        images = self.vae_decoder.decode(latents[:, 1:].to(GET_DTYPE()))
290
        if (self.config["lazy_load"] if "lazy_load" in self.config else False) or (self.config["unload_modules"] if "unload_modules" in self.config else False):
291
292
293
294
295
            del self.vae_decoder
            torch.cuda.empty_cache()
            gc.collect()
        return images

296
297
298
299
300
301
    @ProfilingContext4DebugL1(
        "Init run segment",
        recorder_mode=GET_RECORDER_MODE(),
        metrics_func=monitor_cli.lightx2v_run_init_run_segment_duration,
        metrics_labels=["WanAnimateRunner"],
    )
302
303
    def init_run_segment(self, segment_idx):
        start = segment_idx * self.move_frames
304
        end = start + self.config["target_video_length"]
305
306
307
        if start == 0:
            self.mask_reft_len = 0
        else:
308
            self.mask_reft_len = self.config["refert_num"]
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325

        conditioning_pixel_values = torch.tensor(
            np.stack(self.cond_images[start:end]) / 127.5 - 1,
            device="cuda",
            dtype=GET_DTYPE(),
        ).permute(3, 0, 1, 2)  # c t h w

        face_pixel_values = torch.tensor(
            np.stack(self.face_images[start:end]) / 127.5 - 1,
            device="cuda",
            dtype=GET_DTYPE(),
        ).permute(0, 3, 1, 2)  # thwc->tchw

        if start == 0:
            height, width = self.refer_images.shape[:2]
            refer_t_pixel_values = torch.zeros(
                3,
326
                self.config["refert_num"],
327
328
329
330
331
332
                height,
                width,
                device="cuda",
                dtype=GET_DTYPE(),
            )  # c t h w
        else:
333
            refer_t_pixel_values = self.gen_video[0, :, -self.config["refert_num"] :].transpose(0, 1).clone().detach().cuda()  # c t h w
334
335

        bg_pixel_values, mask_pixel_values = None, None
336
        if self.config["replace_flag"] if "replace_flag" in self.config else False:
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
            bg_pixel_values = torch.tensor(
                np.stack(self.bg_images[start:end]) / 127.5 - 1,
                device="cuda",
                dtype=GET_DTYPE(),
            ).permute(3, 0, 1, 2)  # c t h w,

            mask_pixel_values = torch.tensor(
                np.stack(self.mask_images[start:end])[:, :, :, None],
                device="cuda",
                dtype=GET_DTYPE(),
            ).permute(3, 0, 1, 2)  # c t h w,

        self.inputs.update(
            self.run_image_encoders(
                conditioning_pixel_values,
                refer_t_pixel_values,
                bg_pixel_values,
                mask_pixel_values,
                face_pixel_values,
            )
        )

        if start != 0:
360
            self.model.scheduler.reset(self.input_info.seed, self.input_info.latent_shape)
361
362
363
364
365
366

    def end_run_segment(self, segment_idx):
        if segment_idx != 0:
            self.gen_video = self.gen_video[:, :, self.config["refert_num"] :]
        self.all_out_frames.append(self.gen_video.cpu())

367
368
    def process_images_after_vae_decoder(self):
        self.gen_video_final = torch.cat(self.all_out_frames, dim=2)[:, :, : self.real_frame_len]
369
370
        del self.all_out_frames
        gc.collect()
371
        super().process_images_after_vae_decoder()
372

yihuiwen's avatar
yihuiwen committed
373
374
375
376
377
378
    @ProfilingContext4DebugL1(
        "Run Image Encoder",
        recorder_mode=GET_RECORDER_MODE(),
        metrics_func=monitor_cli.lightx2v_run_img_encode_duration,
        metrics_labels=["WanAnimateRunner"],
    )
379
    def run_image_encoder(self, img):  # CHW
380
        if (self.config["lazy_load"] if "lazy_load" in self.config else False) or (self.config["unload_modules"] if "unload_modules" in self.config else False):
381
382
            self.image_encoder = self.load_image_encoder()
        clip_encoder_out = self.image_encoder.visual([img.unsqueeze(0)]).squeeze(0).to(GET_DTYPE())
383
        if (self.config["lazy_load"] if "lazy_load" in self.config else False) or (self.config["unload_modules"] if "unload_modules" in self.config else False):
384
385
386
387
388
389
390
            del self.image_encoder
            torch.cuda.empty_cache()
            gc.collect()
        return clip_encoder_out

    def load_transformer(self):
        model = WanAnimateModel(
391
            self.config["model_path"],
392
393
394
            self.config,
            self.init_device,
        )
395
396
397
398
399
400
401
402
403
404
405

        if self.config.get("lora_configs") and self.config.lora_configs:
            assert not self.config.get("dit_quantized", False)
            lora_wrapper = WanLoraWrapper(model)
            for lora_config in self.config.lora_configs:
                lora_path = lora_config["path"]
                strength = lora_config.get("strength", 1.0)
                lora_name = lora_wrapper.load_lora(lora_path)
                lora_wrapper.apply_lora(lora_name, strength)
                logger.info(f"Loaded LoRA: {lora_name} with strength: {strength}")

gushiqiao's avatar
gushiqiao committed
406
        motion_encoder, face_encoder = self.load_encoders()
407
408
409
        model.set_animate_encoders(motion_encoder, face_encoder)
        return model

gushiqiao's avatar
gushiqiao committed
410
411
412
    def load_encoders(self):
        motion_encoder = Generator(size=512, style_dim=512, motion_dim=20).eval().requires_grad_(False).to(GET_DTYPE()).cuda()
        face_encoder = FaceEncoder(in_dim=512, hidden_dim=5120, num_heads=4).eval().requires_grad_(False).to(GET_DTYPE()).cuda()
413
414
415
416
417
        motion_weight_dict = remove_substrings_from_keys(load_weights(self.config["model_path"], include_keys=["motion_encoder"]), "motion_encoder.")
        face_weight_dict = remove_substrings_from_keys(load_weights(self.config["model_path"], include_keys=["face_encoder"]), "face_encoder.")
        motion_encoder.load_state_dict(motion_weight_dict)
        face_encoder.load_state_dict(face_weight_dict)
        return motion_encoder, face_encoder