hub.py 16.1 KB
Newer Older
LiangLiu's avatar
LiangLiu committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
import asyncio
import copy
import ctypes
import gc
import json
import os
import tempfile
import threading
import traceback

import torch
import torch.distributed as dist
from loguru import logger

from lightx2v.deploy.common.utils import class_try_catch_async
from lightx2v.infer import init_runner  # noqa
from lightx2v.models.runners.graph_runner import GraphRunner
from lightx2v.utils.envs import CHECK_ENABLE_GRAPH_MODE
from lightx2v.utils.profiler import ProfilingContext
from lightx2v.utils.registry_factory import RUNNER_REGISTER
from lightx2v.utils.set_config import set_config, set_parallel_config
from lightx2v.utils.utils import seed_all


class BaseWorker:
    @ProfilingContext("Init Worker Worker Cost:")
    def __init__(self, args):
        config = set_config(args)
        config["mode"] = ""
        logger.info(f"config:\n{json.dumps(config, ensure_ascii=False, indent=4)}")
        seed_all(config.seed)
        self.rank = 0
        if config.parallel:
            self.rank = dist.get_rank()
            set_parallel_config(config)
        self.runner = RUNNER_REGISTER[config.model_cls](config)
        # fixed config
        self.fixed_config = copy.deepcopy(self.runner.config)

    def update_config(self, kwargs):
        for k, v in kwargs.items():
            setattr(self.runner.config, k, v)

    def set_inputs(self, params):
        self.runner.config["prompt"] = params["prompt"]
        self.runner.config["negative_prompt"] = params.get("negative_prompt", "")
        self.runner.config["image_path"] = params.get("image_path", "")
        self.runner.config["save_video_path"] = params.get("save_video_path", "")
        self.runner.config["seed"] = params.get("seed", self.fixed_config.get("seed", 42))
        self.runner.config["audio_path"] = params.get("audio_path", "")

    async def prepare_input_image(self, params, inputs, tmp_dir, data_manager):
        input_image_path = inputs.get("input_image", "")
        tmp_image_path = os.path.join(tmp_dir, input_image_path)

        # prepare tmp image
        if self.runner.config.task == "i2v":
            img_data = await data_manager.load_bytes(input_image_path)
            with open(tmp_image_path, "wb") as fout:
                fout.write(img_data)

        params["image_path"] = tmp_image_path

    async def prepare_input_audio(self, params, inputs, tmp_dir, data_manager):
        input_audio_path = inputs.get("input_audio", "")
        tmp_audio_path = os.path.join(tmp_dir, input_audio_path)

        # for stream audio input, value is dict
        stream_audio_path = params.get("input_audio", None)
        if stream_audio_path is not None:
            tmp_audio_path = stream_audio_path

        if input_audio_path and self.is_audio_model() and isinstance(tmp_audio_path, str):
            audio_data = await data_manager.load_bytes(input_audio_path)
            with open(tmp_audio_path, "wb") as fout:
                fout.write(audio_data)

        params["audio_path"] = tmp_audio_path

    def prepare_output_video(self, params, outputs, tmp_dir, data_manager):
        output_video_path = outputs.get("output_video", "")
        tmp_video_path = os.path.join(tmp_dir, output_video_path)
        if data_manager.name == "local":
            tmp_video_path = os.path.join(data_manager.local_dir, output_video_path)

        # for stream video output, value is dict
        stream_video_path = params.get("output_video", None)
        if stream_video_path is not None:
            tmp_video_path = stream_video_path

        params["save_video_path"] = tmp_video_path
        return tmp_video_path, output_video_path

    async def prepare_dit_inputs(self, inputs, data_manager):
        device = torch.device("cuda", self.rank)
        text_out = inputs["text_encoder_output"]
        text_encoder_output = await data_manager.load_object(text_out, device)
        image_encoder_output = None

        if self.runner.config.task == "i2v":
            clip_path = inputs["clip_encoder_output"]
            vae_path = inputs["vae_encoder_output"]
            clip_encoder_out = await data_manager.load_object(clip_path, device)
            vae_encoder_out = await data_manager.load_object(vae_path, device)
            image_encoder_output = {
                "clip_encoder_out": clip_encoder_out,
                "vae_encoder_out": vae_encoder_out["vals"],
            }
            # apploy the config changes by vae encoder
            self.update_config(vae_encoder_out["kwargs"])

        self.runner.inputs = {
            "text_encoder_output": text_encoder_output,
            "image_encoder_output": image_encoder_output,
        }

        if self.is_audio_model():
            audio_segments, expected_frames = self.runner.read_audio_input()
            self.runner.inputs["audio_segments"] = audio_segments
            self.runner.inputs["expected_frames"] = expected_frames

    async def save_output_video(self, tmp_video_path, output_video_path, data_manager):
        # save output video
        if data_manager.name != "local" and self.rank == 0 and isinstance(tmp_video_path, str):
            video_data = open(tmp_video_path, "rb").read()
            await data_manager.save_bytes(video_data, output_video_path)

    def is_audio_model(self):
        return "audio" in self.runner.config.model_cls or "seko_talk" in self.runner.config.model_cls


class RunnerThread(threading.Thread):
    def __init__(self, loop, future, run_func, rank, *args, **kwargs):
        super().__init__(daemon=True)
        self.loop = loop
        self.future = future
        self.run_func = run_func
        self.args = args
        self.kwargs = kwargs
        self.rank = rank

    def run(self):
        try:
            # cuda device bind for each thread
            torch.cuda.set_device(self.rank)
            res = self.run_func(*self.args, **self.kwargs)
            status = True
        except:  # noqa
            logger.error(f"RunnerThread run failed: {traceback.format_exc()}")
            res = None
            status = False
        finally:

            async def set_future_result():
                self.future.set_result((status, res))

            # add the task of setting future to the loop queue
            asyncio.run_coroutine_threadsafe(set_future_result(), self.loop)

    def stop(self):
        if self.is_alive():
            try:
                logger.warning(f"Force terminate thread {self.ident} ...")
                ctypes.pythonapi.PyThreadState_SetAsyncExc(ctypes.c_long(self.ident), ctypes.py_object(SystemExit))
            except Exception as e:
                logger.error(f"Force terminate thread failed: {e}")


def class_try_catch_async_with_thread(func):
    async def wrapper(self, *args, **kwargs):
        try:
            return await func(self, *args, **kwargs)
        except asyncio.CancelledError:
            logger.warning(f"RunnerThread inside {func.__name__} cancelled")
            if hasattr(self, "thread"):
                # self.thread.stop()
                self.runner.stop_signal = True
                self.thread.join()
            raise asyncio.CancelledError
        except Exception:
            logger.error(f"Error in {self.__class__.__name__}.{func.__name__}:")
            traceback.print_exc()
            return None

    return wrapper


class PipelineWorker(BaseWorker):
    def __init__(self, args):
        super().__init__(args)
        self.runner.init_modules()
        if CHECK_ENABLE_GRAPH_MODE():
            self.init_temp_params()
            self.graph_runner = GraphRunner(self.runner)
            self.run_func = self.graph_runner.run_pipeline
        else:
            self.run_func = self.runner.run_pipeline

    def init_temp_params(self):
        cur_dir = os.path.dirname(os.path.abspath(__file__))
        base_dir = os.path.abspath(os.path.join(cur_dir, "../../.."))
        self.runner.config["prompt"] = "The video features a old lady is saying something and knitting a sweater."
        if self.runner.config.task == "i2v":
            self.runner.config["image_path"] = os.path.join(base_dir, "assets", "inputs", "audio", "15.png")
        if self.is_audio_model():
            self.runner.config["audio_path"] = os.path.join(base_dir, "assets", "inputs", "audio", "15.wav")

    @class_try_catch_async_with_thread
    async def run(self, inputs, outputs, params, data_manager):
        with tempfile.TemporaryDirectory() as tmp_dir:
            await self.prepare_input_image(params, inputs, tmp_dir, data_manager)
            await self.prepare_input_audio(params, inputs, tmp_dir, data_manager)
            tmp_video_path, output_video_path = self.prepare_output_video(params, outputs, tmp_dir, data_manager)
            logger.info(f"run params: {params}, {inputs}, {outputs}")

            self.set_inputs(params)
            self.runner.stop_signal = False

            future = asyncio.Future()
            self.thread = RunnerThread(asyncio.get_running_loop(), future, self.run_func, self.rank)
            self.thread.start()
            status, _ = await future
            if not status:
                return False
            await self.save_output_video(tmp_video_path, output_video_path, data_manager)
            return True


class TextEncoderWorker(BaseWorker):
    def __init__(self, args):
        super().__init__(args)
        self.runner.text_encoders = self.runner.load_text_encoder()

    @class_try_catch_async
    async def run(self, inputs, outputs, params, data_manager):
        logger.info(f"run params: {params}, {inputs}, {outputs}")
        input_image_path = inputs.get("input_image", "")

        self.set_inputs(params)
        prompt = self.runner.config["prompt"]
        img = None

        if self.runner.config["use_prompt_enhancer"]:
            prompt = self.runner.config["prompt_enhanced"]

        if self.runner.config.task == "i2v" and not self.is_audio_model():
            img = await data_manager.load_image(input_image_path)
            img = self.runner.read_image_input(img)
            if isinstance(img, tuple):
                img = img[0]

        out = self.runner.run_text_encoder(prompt, img)
        if self.rank == 0:
            await data_manager.save_object(out, outputs["text_encoder_output"])

        del out
        torch.cuda.empty_cache()
        gc.collect()
        return True


class ImageEncoderWorker(BaseWorker):
    def __init__(self, args):
        super().__init__(args)
        self.runner.image_encoder = self.runner.load_image_encoder()

    @class_try_catch_async
    async def run(self, inputs, outputs, params, data_manager):
        logger.info(f"run params: {params}, {inputs}, {outputs}")
        self.set_inputs(params)

        img = await data_manager.load_image(inputs["input_image"])
        img = self.runner.read_image_input(img)
        if isinstance(img, tuple):
            img = img[0]
        out = self.runner.run_image_encoder(img)
        if self.rank == 0:
            await data_manager.save_object(out, outputs["clip_encoder_output"])

        del out
        torch.cuda.empty_cache()
        gc.collect()
        return True


class VaeEncoderWorker(BaseWorker):
    def __init__(self, args):
        super().__init__(args)
        self.runner.vae_encoder, vae_decoder = self.runner.load_vae()
        del vae_decoder

    @class_try_catch_async
    async def run(self, inputs, outputs, params, data_manager):
        logger.info(f"run params: {params}, {inputs}, {outputs}")
        self.set_inputs(params)
        img = await data_manager.load_image(inputs["input_image"])
        # could change config.lat_h, lat_w, tgt_h, tgt_w
        img = self.runner.read_image_input(img)
        if isinstance(img, tuple):
            img = img[1] if self.runner.vae_encoder_need_img_original else img[0]
        # run vae encoder changed the config, we use kwargs pass changes
        vals = self.runner.run_vae_encoder(img)
        out = {"vals": vals, "kwargs": {}}

        for key in ["lat_h", "lat_w", "tgt_h", "tgt_w"]:
            if hasattr(self.runner.config, key):
                out["kwargs"][key] = int(getattr(self.runner.config, key))

        if self.rank == 0:
            await data_manager.save_object(out, outputs["vae_encoder_output"])

        del out, img, vals
        torch.cuda.empty_cache()
        gc.collect()
        return True


class DiTWorker(BaseWorker):
    def __init__(self, args):
        super().__init__(args)
        self.runner.model = self.runner.load_transformer()

    @class_try_catch_async_with_thread
    async def run(self, inputs, outputs, params, data_manager):
        logger.info(f"run params: {params}, {inputs}, {outputs}")
        self.set_inputs(params)

        await self.prepare_dit_inputs(inputs, data_manager)
        self.runner.stop_signal = False
        future = asyncio.Future()
        self.thread = RunnerThread(asyncio.get_running_loop(), future, self.run_dit, self.rank)
        self.thread.start()
        status, (out, _) = await future
        if not status:
            return False

        if self.rank == 0:
            await data_manager.save_tensor(out, outputs["latents"])

        del out
        torch.cuda.empty_cache()
        gc.collect()
        return True

    def run_dit(self):
        self.runner.init_run()
        assert self.runner.video_segment_num == 1, "DiTWorker only support single segment"
helloyongyang's avatar
helloyongyang committed
348
        latents = self.runner.run_segment(total_steps=None)
LiangLiu's avatar
LiangLiu committed
349
        self.runner.end_run()
helloyongyang's avatar
helloyongyang committed
350
        return latents
LiangLiu's avatar
LiangLiu committed
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416


class VaeDecoderWorker(BaseWorker):
    def __init__(self, args):
        super().__init__(args)
        vae_encoder, self.runner.vae_decoder = self.runner.load_vae()
        self.runner.vfi_model = self.runner.load_vfi_model() if "video_frame_interpolation" in self.runner.config else None
        del vae_encoder

    @class_try_catch_async
    async def run(self, inputs, outputs, params, data_manager):
        with tempfile.TemporaryDirectory() as tmp_dir:
            tmp_video_path, output_video_path = self.prepare_output_video(params, outputs, tmp_dir, data_manager)
            logger.info(f"run params: {params}, {inputs}, {outputs}")
            self.set_inputs(params)

            device = torch.device("cuda", self.rank)
            latents = await data_manager.load_tensor(inputs["latents"], device)
            self.runner.gen_video = self.runner.run_vae_decoder(latents)
            self.runner.process_images_after_vae_decoder(save_video=True)

            await self.save_output_video(tmp_video_path, output_video_path, data_manager)

            del latents
            torch.cuda.empty_cache()
            gc.collect()
            return True


class SegmentDiTWorker(BaseWorker):
    def __init__(self, args):
        super().__init__(args)
        self.runner.model = self.runner.load_transformer()
        self.runner.vae_encoder, self.runner.vae_decoder = self.runner.load_vae()
        self.runner.vfi_model = self.runner.load_vfi_model() if "video_frame_interpolation" in self.runner.config else None
        if self.is_audio_model():
            self.runner.audio_encoder = self.runner.load_audio_encoder()
            self.runner.audio_adapter = self.runner.load_audio_adapter()
            self.runner.model.set_audio_adapter(self.runner.audio_adapter)

    @class_try_catch_async_with_thread
    async def run(self, inputs, outputs, params, data_manager):
        with tempfile.TemporaryDirectory() as tmp_dir:
            tmp_video_path, output_video_path = self.prepare_output_video(params, outputs, tmp_dir, data_manager)
            await self.prepare_input_audio(params, inputs, tmp_dir, data_manager)
            logger.info(f"run params: {params}, {inputs}, {outputs}")
            self.set_inputs(params)

            await self.prepare_dit_inputs(inputs, data_manager)
            self.runner.stop_signal = False
            future = asyncio.Future()
            self.thread = RunnerThread(asyncio.get_running_loop(), future, self.run_dit, self.rank)
            self.thread.start()
            status, _ = await future
            if not status:
                return False

            await self.save_output_video(tmp_video_path, output_video_path, data_manager)

            torch.cuda.empty_cache()
            gc.collect()
            return True

    def run_dit(self):
        self.runner.run_main()
        self.runner.process_images_after_vae_decoder(save_video=True)