utils.py 5.04 KB
Newer Older
helloyongyang's avatar
helloyongyang committed
1
import torch
Xinchi Huang's avatar
Xinchi Huang committed
2
import torch.distributed as dist
gushiqiao's avatar
gushiqiao committed
3
from loguru import logger
gushiqiao's avatar
gushiqiao committed
4
from lightx2v.utils.envs import *
helloyongyang's avatar
helloyongyang committed
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21


def compute_freqs(c, grid_sizes, freqs):
    freqs = freqs.split([c - 2 * (c // 3), c // 3, c // 3], dim=1)
    f, h, w = grid_sizes[0].tolist()
    seq_len = f * h * w
    freqs_i = torch.cat(
        [
            freqs[0][:f].view(f, 1, 1, -1).expand(f, h, w, -1),
            freqs[1][:h].view(1, h, 1, -1).expand(f, h, w, -1),
            freqs[2][:w].view(1, 1, w, -1).expand(f, h, w, -1),
        ],
        dim=-1,
    ).reshape(seq_len, 1, -1)

    return freqs_i

22

gushiqiao's avatar
gushiqiao committed
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
def compute_freqs_audio(c, grid_sizes, freqs):
    freqs = freqs.split([c - 2 * (c // 3), c // 3, c // 3], dim=1)
    f, h, w = grid_sizes[0].tolist()
    f = f + 1  ##for r2v add 1 channel
    seq_len = f * h * w
    freqs_i = torch.cat(
        [
            freqs[0][:f].view(f, 1, 1, -1).expand(f, h, w, -1),
            freqs[1][:h].view(1, h, 1, -1).expand(f, h, w, -1),
            freqs[2][:w].view(1, 1, w, -1).expand(f, h, w, -1),
        ],
        dim=-1,
    ).reshape(seq_len, 1, -1)

    return freqs_i


Zhuguanyu Wu's avatar
Zhuguanyu Wu committed
40
def compute_freqs_causvid(c, grid_sizes, freqs, start_frame=0):
41
42
43
44
45
46
47
48
49
50
51
52
53
54
    freqs = freqs.split([c - 2 * (c // 3), c // 3, c // 3], dim=1)
    f, h, w = grid_sizes[0].tolist()
    seq_len = f * h * w
    freqs_i = torch.cat(
        [
            freqs[0][start_frame : start_frame + f].view(f, 1, 1, -1).expand(f, h, w, -1),
            freqs[1][:h].view(1, h, 1, -1).expand(f, h, w, -1),
            freqs[2][:w].view(1, 1, w, -1).expand(f, h, w, -1),
        ],
        dim=-1,
    ).reshape(seq_len, 1, -1)

    return freqs_i

helloyongyang's avatar
helloyongyang committed
55

Xinchi Huang's avatar
Xinchi Huang committed
56
57
58
def pad_freqs(original_tensor, target_len):
    seq_len, s1, s2 = original_tensor.shape
    pad_size = target_len - seq_len
Dongz's avatar
Dongz committed
59
    padding_tensor = torch.ones(pad_size, s1, s2, dtype=original_tensor.dtype, device=original_tensor.device)
Xinchi Huang's avatar
Xinchi Huang committed
60
61
62
63
    padded_tensor = torch.cat([original_tensor, padding_tensor], dim=0)
    return padded_tensor


helloyongyang's avatar
helloyongyang committed
64
65
66
67
def apply_rotary_emb(x, freqs_i):
    n = x.size(1)
    seq_len = freqs_i.size(0)

Dongz's avatar
Dongz committed
68
    x_i = torch.view_as_complex(x[:seq_len].to(torch.float64).reshape(seq_len, n, -1, 2))
helloyongyang's avatar
helloyongyang committed
69
70
    # Apply rotary embedding
    x_i = torch.view_as_real(x_i * freqs_i).flatten(2)
gushiqiao's avatar
gushiqiao committed
71
72
    x_i = torch.cat([x_i, x[seq_len:]])
    return x_i.to(torch.bfloat16)
helloyongyang's avatar
helloyongyang committed
73
74


gushiqiao's avatar
gushiqiao committed
75
def apply_rotary_emb_chunk(x, freqs_i, chunk_size, remaining_chunk_size=100):
gushiqiao's avatar
gushiqiao committed
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
    n = x.size(1)
    seq_len = freqs_i.size(0)

    output_chunks = []
    for start in range(0, seq_len, chunk_size):
        end = min(start + chunk_size, seq_len)
        x_chunk = x[start:end]
        freqs_chunk = freqs_i[start:end]

        x_chunk_complex = torch.view_as_complex(x_chunk.to(torch.float32).reshape(end - start, n, -1, 2))
        x_chunk_embedded = torch.view_as_real(x_chunk_complex * freqs_chunk).flatten(2).to(torch.bfloat16)
        output_chunks.append(x_chunk_embedded)
        del x_chunk_complex, x_chunk_embedded
        torch.cuda.empty_cache()

    result = []
    for chunk in output_chunks:
        result.append(chunk)
    del output_chunks
    torch.cuda.empty_cache()

    for start in range(seq_len, x.size(0), remaining_chunk_size):
        end = min(start + remaining_chunk_size, x.size(0))
        result.append(x[start:end])

    x_i = torch.cat(result, dim=0)
    del result
    torch.cuda.empty_cache()

    return x_i.to(torch.bfloat16)


helloyongyang's avatar
helloyongyang committed
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
def rope_params(max_seq_len, dim, theta=10000):
    assert dim % 2 == 0
    freqs = torch.outer(
        torch.arange(max_seq_len),
        1.0 / torch.pow(theta, torch.arange(0, dim, 2).to(torch.float64).div(dim)),
    )
    freqs = torch.polar(torch.ones_like(freqs), freqs)
    return freqs


def sinusoidal_embedding_1d(dim, position):
    # preprocess
    assert dim % 2 == 0
    half = dim // 2
    position = position.type(torch.float64)

    # calculation
Dongz's avatar
Dongz committed
125
    sinusoid = torch.outer(position, torch.pow(10000, -torch.arange(half).to(position).div(half)))
gushiqiao's avatar
gushiqiao committed
126
127
128
    x = torch.cat([torch.cos(sinusoid), torch.sin(sinusoid)], dim=1)
    if GET_DTYPE() == "BF16":
        x = x.to(torch.bfloat16)
gushiqiao's avatar
gushiqiao committed
129
    return x
130
131


GoatWu's avatar
GoatWu committed
132
def guidance_scale_embedding(w, embedding_dim=256, cfg_range=(1.0, 6.0), target_range=1000.0, dtype=torch.float32):
133
134
135
136
137
138
139
140
141
142
143
    """
    Args:
    timesteps: torch.Tensor: generate embedding vectors at these timesteps
    embedding_dim: int: dimension of the embeddings to generate
    dtype: data type of the generated embeddings

    Returns:
    embedding vectors with shape `(len(timesteps), embedding_dim)`
    """
    assert len(w.shape) == 1
    cfg_min, cfg_max = cfg_range
GoatWu's avatar
GoatWu committed
144
145
    w = torch.round(w)
    w = torch.clamp(w, min=cfg_min, max=cfg_max)
146
147
148
149
150
151
152
153
154
155
156
    w = (w - cfg_min) / (cfg_max - cfg_min)  # [0, 1]
    w = w * target_range
    half_dim = embedding_dim // 2
    emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1)
    emb = torch.exp(torch.arange(half_dim, dtype=dtype).to(w.device) * -emb).to(w.device)
    emb = w.to(dtype)[:, None] * emb[None, :]
    emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
    if embedding_dim % 2 == 1:  # zero pad
        emb = torch.nn.functional.pad(emb, (0, 1).to(w.device))
    assert emb.shape == (w.shape[0], embedding_dim)
    return emb