index.rst 2.51 KB
Newer Older
helloyongyang's avatar
helloyongyang committed
1
2
3
4
欢迎了解 Lightx2v!
==================

.. figure:: ../../../assets/img_lightx2v.png
helloyongyang's avatar
helloyongyang committed
5
  :width: 80%
helloyongyang's avatar
helloyongyang committed
6
7
8
9
10
11
  :align: center
  :alt: Lightx2v
  :class: no-scaled-link

.. raw:: html

helloyongyang's avatar
helloyongyang committed
12
13
14
15
16
17
18
19
20
21
22
23
24
    <div align="center" style="font-family: charter;">

    <a href="https://opensource.org/licenses/Apache-2.0"><img src="https://img.shields.io/badge/License-Apache_2.0-blue.svg" alt="License"></a>
    <a href="https://deepwiki.com/ModelTC/lightx2v"><img src="https://deepwiki.com/badge.svg" alt="Ask DeepWiki"></a>
    <a href="https://lightx2v-en.readthedocs.io/en/latest"><img src="https://img.shields.io/badge/docs-English-99cc2" alt="Doc"></a>
    <a href="https://lightx2v-zhcn.readthedocs.io/zh-cn/latest"><img src="https://img.shields.io/badge/文档-中文-99cc2" alt="Doc"></a>
    <a href="https://hub.docker.com/r/lightx2v/lightx2v/tags"><img src="https://badgen.net/badge/icon/docker?icon=docker&label" alt="Docker"></a>

    </div>

    <div align="center" style="font-family: charter;">
    <strong>LightX2V: 一个轻量级的视频生成推理框架</strong>
    </div>
helloyongyang's avatar
helloyongyang committed
25
26


helloyongyang's avatar
helloyongyang committed
27
LightX2V 是一个轻量级的视频生成推理框架,旨在提供一个利用多种先进的视频生成推理技术的推理工具。该框架作为统一的推理平台,支持不同模型的文本到视频(T2V)和图像到视频(I2V)等生成任务。X2V 表示将不同的输入模态(X,如文本或图像)转换(to)为视频输出(V)。
helloyongyang's avatar
helloyongyang committed
28

helloyongyang's avatar
helloyongyang committed
29
30
31
32
GitHub: https://github.com/ModelTC/lightx2v

HuggingFace: https://huggingface.co/lightx2v

helloyongyang's avatar
helloyongyang committed
33
34
35
36
37
38
39
40
文档列表
-------------

.. toctree::
   :maxdepth: 1
   :caption: 快速入门

   快速入门 <getting_started/quickstart.md>
helloyongyang's avatar
helloyongyang committed
41
   基准测试 <getting_started/benchmark.md>
helloyongyang's avatar
helloyongyang committed
42
43
44
45
46
47
48
49
50
51

.. toctree::
   :maxdepth: 1
   :caption: 方法教程

   模型量化 <method_tutorials/quantization.md>
   特征缓存 <method_tutorials/cache.md>
   注意力机制 <method_tutorials/attention.md>
   参数卸载 <method_tutorials/offload.md>
   并行推理 <method_tutorials/parallel.md>
helloyongyang's avatar
helloyongyang committed
52
53
   步数蒸馏 <method_tutorials/step_distill.md>
   自回归蒸馏 <method_tutorials/autoregressive_distill.md>
helloyongyang's avatar
helloyongyang committed
54
55
56
57
58
59
60

.. toctree::
   :maxdepth: 1
   :caption: 部署指南

   低延迟场景部署 <deploy_guides/for_low_latency.md>
   低资源场景部署 <deploy_guides/for_low_resource.md>
helloyongyang's avatar
helloyongyang committed
61
   Lora模型部署 <deploy_guides/lora_deploy.md>
helloyongyang's avatar
helloyongyang committed
62
   服务化部署 <deploy_guides/deploy_service.md>
helloyongyang's avatar
helloyongyang committed
63
64
   Gradio部署 <deploy_guides/deploy_gradio.md>
   ComfyUI部署 <deploy_guides/deploy_comfyui.md>
helloyongyang's avatar
helloyongyang committed
65
   本地windows电脑部署 <deploy_guides/deploy_local_windows.md>