vae.py 5.84 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
import argparse
from fastapi import FastAPI
from pydantic import BaseModel
from loguru import logger
from typing import Optional
import numpy as np
import uvicorn
import json
import os
import torch
import torchvision
import torchvision.transforms.functional as TF
13
from lightx2v.common.ops import *
14

15
from lightx2v.utils.registry_factory import RUNNER_REGISTER
16
from lightx2v.models.runners.hunyuan.hunyuan_runner import HunyuanRunner
17
from lightx2v.models.runners.wan.wan_runner import WanRunner
18
from lightx2v.models.runners.wan.wan_distill_runner import WanDistillRunner
19
20
from lightx2v.models.runners.wan.wan_causvid_runner import WanCausVidRunner
from lightx2v.models.runners.wan.wan_skyreels_v2_df_runner import WanSkyreelsV2DFRunner
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

from lightx2v.utils.profiler import ProfilingContext
from lightx2v.utils.set_config import set_config
from lightx2v.utils.service_utils import TaskStatusMessage, BaseServiceStatus, ProcessManager, TensorTransporter, ImageTransporter

tensor_transporter = TensorTransporter()
image_transporter = ImageTransporter()

# =========================
# FastAPI Related Code
# =========================

runner = None

app = FastAPI()


class Message(BaseModel):
    task_id: str
    task_id_must_unique: bool = False

    img: Optional[bytes] = None
    latents: Optional[bytes] = None

    def get(self, key, default=None):
        return getattr(self, key, default)


class VAEServiceStatus(BaseServiceStatus):
    pass


53
class VAERunner:
54
55
    def __init__(self, config):
        self.config = config
56
57
58
59
        self.runner_cls = RUNNER_REGISTER[self.config.model_cls]

        self.runner = self.runner_cls(config)
        self.runner.vae_encoder, self.runner.vae_decoder = self.runner.load_vae(self.runner.get_init_device())
60
61
62

    def _run_vae_encoder(self, img):
        img = image_transporter.load_image(img)
63
        vae_encode_out, kwargs = self.runner.run_vae_encoder(img)
64
65
66
67
        return vae_encode_out, kwargs

    def _run_vae_decoder(self, latents):
        latents = tensor_transporter.load_tensor(latents)
68
        images = self.runner.vae_decoder.decode(latents, generator=None, config=self.config)
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
        return images


def run_vae_encoder(message: Message):
    try:
        global runner
        vae_encode_out, kwargs = runner._run_vae_encoder(message.img)
        VAEServiceStatus.complete_task(message)
        return vae_encode_out, kwargs
    except Exception as e:
        logger.error(f"task_id {message.task_id} failed: {str(e)}")
        VAEServiceStatus.record_failed_task(message, error=str(e))


def run_vae_decoder(message: Message):
    try:
        global runner
        images = runner._run_vae_decoder(message.latents)
        VAEServiceStatus.complete_task(message)
        return images
    except Exception as e:
        logger.error(f"task_id {message.task_id} failed: {str(e)}")
        VAEServiceStatus.record_failed_task(message, error=str(e))


@app.post("/v1/local/vae_model/encoder/generate")
def v1_local_vae_model_encoder_generate(message: Message):
    try:
        task_id = VAEServiceStatus.start_task(message)
        vae_encode_out, kwargs = run_vae_encoder(message)
        output = tensor_transporter.prepare_tensor(vae_encode_out)
        del vae_encode_out
        return {"task_id": task_id, "task_status": "completed", "output": output, "kwargs": kwargs}
    except RuntimeError as e:
        return {"error": str(e)}


@app.post("/v1/local/vae_model/decoder/generate")
def v1_local_vae_model_decoder_generate(message: Message):
    try:
        task_id = VAEServiceStatus.start_task(message)
        vae_decode_out = run_vae_decoder(message)
        output = tensor_transporter.prepare_tensor(vae_decode_out)
        del vae_decode_out
        return {"task_id": task_id, "task_status": "completed", "output": output, "kwargs": None}
    except RuntimeError as e:
        return {"error": str(e)}


118
119
120
121
122
@app.get("/v1/local/vae_model/generate/service_status")
async def get_service_status():
    return VAEServiceStatus.get_status_service()


123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
@app.get("/v1/local/vae_model/encoder/generate/service_status")
async def get_service_status():
    return VAEServiceStatus.get_status_service()


@app.get("/v1/local/vae_model/decoder/generate/service_status")
async def get_service_status():
    return VAEServiceStatus.get_status_service()


@app.get("/v1/local/vae_model/encoder/generate/get_all_tasks")
async def get_all_tasks():
    return VAEServiceStatus.get_all_tasks()


@app.get("/v1/local/vae_model/decoder/generate/get_all_tasks")
async def get_all_tasks():
    return VAEServiceStatus.get_all_tasks()


@app.post("/v1/local/vae_model/encoder/generate/task_status")
async def get_task_status(message: TaskStatusMessage):
    return VAEServiceStatus.get_status_task_id(message.task_id)


@app.post("/v1/local/vae_model/decoder/generate/task_status")
async def get_task_status(message: TaskStatusMessage):
    return VAEServiceStatus.get_status_task_id(message.task_id)


# =========================
# Main Entry
# =========================

if __name__ == "__main__":
    ProcessManager.register_signal_handler()
    parser = argparse.ArgumentParser()
160
    parser.add_argument("--model_cls", type=str, required=True, choices=["wan2.1", "hunyuan", "wan2.1_distill", "wan2.1_causvid", "wan2.1_skyreels_v2_df", "cogvideox"], default="hunyuan")
161
162
163
164
165
166
167
168
169
170
171
172
    parser.add_argument("--task", type=str, choices=["t2v", "i2v"], default="t2v")
    parser.add_argument("--model_path", type=str, required=True)
    parser.add_argument("--config_json", type=str, required=True)

    parser.add_argument("--port", type=int, default=9004)
    args = parser.parse_args()
    logger.info(f"args: {args}")

    with ProfilingContext("Init Server Cost"):
        config = set_config(args)
        config["mode"] = "split_server"
        logger.info(f"config:\n{json.dumps(config, ensure_ascii=False, indent=4)}")
173
        runner = VAERunner(config)
174
175

    uvicorn.run(app, host="0.0.0.0", port=config.port, reload=False, workers=1)