text_encoder.py 4.29 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
import argparse
from typing import Optional
from fastapi import FastAPI
from pydantic import BaseModel
from loguru import logger
import uvicorn
import json
import os
import torch

11
12
13
from lightx2v.utils.registry_factory import RUNNER_REGISTER
from lightx2v.models.runners.hunyuan.hunyuan_runner import HunyuanRunner
from lightx2v.models.runners.wan.wan_runner import WanRunner
14
from lightx2v.models.runners.wan.wan_distill_runner import WanDistillRunner
15
16
from lightx2v.models.runners.wan.wan_causvid_runner import WanCausVidRunner
from lightx2v.models.runners.wan.wan_skyreels_v2_df_runner import WanSkyreelsV2DFRunner
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

from lightx2v.utils.profiler import ProfilingContext
from lightx2v.utils.set_config import set_config
from lightx2v.utils.service_utils import TaskStatusMessage, BaseServiceStatus, ProcessManager, TensorTransporter, ImageTransporter

tensor_transporter = TensorTransporter()
image_transporter = ImageTransporter()

# =========================
# FastAPI Related Code
# =========================

runner = None

app = FastAPI()


class Message(BaseModel):
    task_id: str
    task_id_must_unique: bool = False

    text: str
    img: Optional[bytes] = None
40
    n_prompt: Optional[str] = None
41
42
43
44
45
46
47
48
49
50
51
52

    def get(self, key, default=None):
        return getattr(self, key, default)


class TextEncoderServiceStatus(BaseServiceStatus):
    pass


class TextEncoderRunner:
    def __init__(self, config):
        self.config = config
53
54
55
56
        self.runner_cls = RUNNER_REGISTER[self.config.model_cls]

        self.runner = self.runner_cls(config)
        self.runner.text_encoders = self.runner.load_text_encoder(self.runner.get_init_device())
57

58
    def _run_text_encoder(self, text, img, n_prompt):
59
60
61
62
        if img is not None:
            img = image_transporter.load_image(img)
        self.runner.config["negative_prompt"] = n_prompt
        text_encoder_output = self.runner.run_text_encoder(text, img)
63
64
65
66
67
68
        return text_encoder_output


def run_text_encoder(message: Message):
    try:
        global runner
69
        text_encoder_output = runner._run_text_encoder(message.text, message.img, message.n_prompt)
70
71
72
73
74
75
76
        TextEncoderServiceStatus.complete_task(message)
        return text_encoder_output
    except Exception as e:
        logger.error(f"task_id {message.task_id} failed: {str(e)}")
        TextEncoderServiceStatus.record_failed_task(message, error=str(e))


77
@app.post("/v1/local/text_encoders/generate")
78
79
80
81
82
83
84
85
86
87
88
def v1_local_text_encoder_generate(message: Message):
    try:
        task_id = TextEncoderServiceStatus.start_task(message)
        text_encoder_output = run_text_encoder(message)
        output = tensor_transporter.prepare_tensor(text_encoder_output)
        del text_encoder_output
        return {"task_id": task_id, "task_status": "completed", "output": output, "kwargs": None}
    except RuntimeError as e:
        return {"error": str(e)}


89
@app.get("/v1/local/text_encoders/generate/service_status")
90
91
92
93
async def get_service_status():
    return TextEncoderServiceStatus.get_status_service()


94
@app.get("/v1/local/text_encoders/generate/get_all_tasks")
95
96
97
98
async def get_all_tasks():
    return TextEncoderServiceStatus.get_all_tasks()


99
@app.post("/v1/local/text_encoders/generate/task_status")
100
101
102
103
104
105
106
107
108
109
110
async def get_task_status(message: TaskStatusMessage):
    return TextEncoderServiceStatus.get_status_task_id(message.task_id)


# =========================
# Main Entry
# =========================

if __name__ == "__main__":
    ProcessManager.register_signal_handler()
    parser = argparse.ArgumentParser()
111
    parser.add_argument("--model_cls", type=str, required=True, choices=["wan2.1", "hunyuan", "wan2.1_distill", "wan2.1_causvid", "wan2.1_skyreels_v2_df", "cogvideox"], default="hunyuan")
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
    parser.add_argument("--task", type=str, choices=["t2v", "i2v"], default="t2v")
    parser.add_argument("--model_path", type=str, required=True)
    parser.add_argument("--config_json", type=str, required=True)

    parser.add_argument("--port", type=int, default=9002)
    args = parser.parse_args()
    logger.info(f"args: {args}")

    with ProfilingContext("Init Server Cost"):
        config = set_config(args)
        config["mode"] = "split_server"
        logger.info(f"config:\n{json.dumps(config, ensure_ascii=False, indent=4)}")
        runner = TextEncoderRunner(config)

    uvicorn.run(app, host="0.0.0.0", port=config.port, reload=False, workers=1)