"examples/text-generation/pplm/run_pplm.py" did not exist on "821de121e86574504ec648f76ccb924e38125b52"
model.py 15.2 KB
Newer Older
helloyongyang's avatar
helloyongyang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# Modified from ``https://github.com/openai/CLIP'' and ``https://github.com/mlfoundations/open_clip''
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
import logging
import math

import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision.transforms as T

from lightx2v.attentions import attention
from lightx2v.text2v.models.text_encoders.hf.t5.tokenizer import HuggingfaceTokenizer

from .xlm_roberta import XLMRoberta

__all__ = [
Dongz's avatar
Dongz committed
17
18
19
    "XLMRobertaCLIP",
    "clip_xlm_roberta_vit_h_14",
    "CLIPModel",
helloyongyang's avatar
helloyongyang committed
20
21
22
23
24
25
26
27
28
29
]


def pos_interpolate(pos, seq_len):
    if pos.size(1) == seq_len:
        return pos
    else:
        src_grid = int(math.sqrt(pos.size(1)))
        tar_grid = int(math.sqrt(seq_len))
        n = pos.size(1) - src_grid * src_grid
Dongz's avatar
Dongz committed
30
31
32
33
34
35
36
        return torch.cat(
            [
                pos[:, :n],
                F.interpolate(pos[:, n:].float().reshape(1, src_grid, src_grid, -1).permute(0, 3, 1, 2), size=(tar_grid, tar_grid), mode="bicubic", align_corners=False).flatten(2).transpose(1, 2),
            ],
            dim=1,
        )
helloyongyang's avatar
helloyongyang committed
37
38
39
40
41
42
43
44
45
46
47
48
49


class QuickGELU(nn.Module):
    def forward(self, x):
        return x * torch.sigmoid(1.702 * x)


class LayerNorm(nn.LayerNorm):
    def forward(self, x):
        return super().forward(x.float()).type_as(x)


class SelfAttention(nn.Module):
Dongz's avatar
Dongz committed
50
    def __init__(self, dim, num_heads, causal=False, attn_dropout=0.0, proj_dropout=0.0):
helloyongyang's avatar
helloyongyang committed
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
        assert dim % num_heads == 0
        super().__init__()
        self.dim = dim
        self.num_heads = num_heads
        self.head_dim = dim // num_heads
        self.causal = causal
        self.attn_dropout = attn_dropout
        self.proj_dropout = proj_dropout

        # layers
        self.to_qkv = nn.Linear(dim, dim * 3)
        self.proj = nn.Linear(dim, dim)

    def forward(self, x):
        """
        x:   [B, L, C].
        """
        b, s, c, n, d = *x.size(), self.num_heads, self.head_dim

        # compute query, key, value
        q, k, v = self.to_qkv(x).view(b, s, 3, n, d).unbind(2)

        # compute attention
Dongz's avatar
Dongz committed
74
        x = attention(q=q, k=k, v=v, attention_type="torch_sdpa")
helloyongyang's avatar
helloyongyang committed
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
        x = x.reshape(b, s, c)

        # output
        x = self.proj(x)
        x = F.dropout(x, self.proj_dropout, self.training)
        return x


class SwiGLU(nn.Module):
    def __init__(self, dim, mid_dim):
        super().__init__()
        self.dim = dim
        self.mid_dim = mid_dim

        # layers
        self.fc1 = nn.Linear(dim, mid_dim)
        self.fc2 = nn.Linear(dim, mid_dim)
        self.fc3 = nn.Linear(mid_dim, dim)

    def forward(self, x):
        x = F.silu(self.fc1(x)) * self.fc2(x)
        x = self.fc3(x)
        return x


class AttentionBlock(nn.Module):
Dongz's avatar
Dongz committed
101
102
    def __init__(self, dim, mlp_ratio, num_heads, post_norm=False, causal=False, activation="quick_gelu", attn_dropout=0.0, proj_dropout=0.0, norm_eps=1e-5):
        assert activation in ["quick_gelu", "gelu", "swi_glu"]
helloyongyang's avatar
helloyongyang committed
103
104
105
106
107
108
109
110
111
112
        super().__init__()
        self.dim = dim
        self.mlp_ratio = mlp_ratio
        self.num_heads = num_heads
        self.post_norm = post_norm
        self.causal = causal
        self.norm_eps = norm_eps

        # layers
        self.norm1 = LayerNorm(dim, eps=norm_eps)
Dongz's avatar
Dongz committed
113
        self.attn = SelfAttention(dim, num_heads, causal, attn_dropout, proj_dropout)
helloyongyang's avatar
helloyongyang committed
114
        self.norm2 = LayerNorm(dim, eps=norm_eps)
Dongz's avatar
Dongz committed
115
        if activation == "swi_glu":
helloyongyang's avatar
helloyongyang committed
116
117
            self.mlp = SwiGLU(dim, int(dim * mlp_ratio))
        else:
Dongz's avatar
Dongz committed
118
            self.mlp = nn.Sequential(nn.Linear(dim, int(dim * mlp_ratio)), QuickGELU() if activation == "quick_gelu" else nn.GELU(), nn.Linear(int(dim * mlp_ratio), dim), nn.Dropout(proj_dropout))
helloyongyang's avatar
helloyongyang committed
119
120
121
122
123
124
125
126
127
128
129
130

    def forward(self, x):
        if self.post_norm:
            x = x + self.norm1(self.attn(x))
            x = x + self.norm2(self.mlp(x))
        else:
            x = x + self.attn(self.norm1(x))
            x = x + self.mlp(self.norm2(x))
        return x


class AttentionPool(nn.Module):
Dongz's avatar
Dongz committed
131
    def __init__(self, dim, mlp_ratio, num_heads, activation="gelu", proj_dropout=0.0, norm_eps=1e-5):
helloyongyang's avatar
helloyongyang committed
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
        assert dim % num_heads == 0
        super().__init__()
        self.dim = dim
        self.mlp_ratio = mlp_ratio
        self.num_heads = num_heads
        self.head_dim = dim // num_heads
        self.proj_dropout = proj_dropout
        self.norm_eps = norm_eps

        # layers
        gain = 1.0 / math.sqrt(dim)
        self.cls_embedding = nn.Parameter(gain * torch.randn(1, 1, dim))
        self.to_q = nn.Linear(dim, dim)
        self.to_kv = nn.Linear(dim, dim * 2)
        self.proj = nn.Linear(dim, dim)
        self.norm = LayerNorm(dim, eps=norm_eps)
Dongz's avatar
Dongz committed
148
        self.mlp = nn.Sequential(nn.Linear(dim, int(dim * mlp_ratio)), QuickGELU() if activation == "quick_gelu" else nn.GELU(), nn.Linear(int(dim * mlp_ratio), dim), nn.Dropout(proj_dropout))
helloyongyang's avatar
helloyongyang committed
149
150
151
152
153
154
155
156
157
158
159
160

    def forward(self, x):
        """
        x:  [B, L, C].
        """
        b, s, c, n, d = *x.size(), self.num_heads, self.head_dim

        # compute query, key, value
        q = self.to_q(self.cls_embedding).view(1, 1, n, d).expand(b, -1, -1, -1)
        k, v = self.to_kv(x).view(b, s, 2, n, d).unbind(2)

        # compute attention
Dongz's avatar
Dongz committed
161
        x = attention(q=q, k=k, v=v, attention_type="torch_sdpa")
helloyongyang's avatar
helloyongyang committed
162
163
164
165
166
167
168
169
170
171
172
173
        x = x.reshape(b, 1, c)

        # output
        x = self.proj(x)
        x = F.dropout(x, self.proj_dropout, self.training)

        # mlp
        x = x + self.mlp(self.norm(x))
        return x[:, 0]


class VisionTransformer(nn.Module):
Dongz's avatar
Dongz committed
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
    def __init__(
        self,
        image_size=224,
        patch_size=16,
        dim=768,
        mlp_ratio=4,
        out_dim=512,
        num_heads=12,
        num_layers=12,
        pool_type="token",
        pre_norm=True,
        post_norm=False,
        activation="quick_gelu",
        attn_dropout=0.0,
        proj_dropout=0.0,
        embedding_dropout=0.0,
        norm_eps=1e-5,
    ):
helloyongyang's avatar
helloyongyang committed
192
        if image_size % patch_size != 0:
Dongz's avatar
Dongz committed
193
194
            print("[WARNING] image_size is not divisible by patch_size", flush=True)
        assert pool_type in ("token", "token_fc", "attn_pool")
helloyongyang's avatar
helloyongyang committed
195
196
197
198
        out_dim = out_dim or dim
        super().__init__()
        self.image_size = image_size
        self.patch_size = patch_size
Dongz's avatar
Dongz committed
199
        self.num_patches = (image_size // patch_size) ** 2
helloyongyang's avatar
helloyongyang committed
200
201
202
203
204
205
206
207
208
209
210
        self.dim = dim
        self.mlp_ratio = mlp_ratio
        self.out_dim = out_dim
        self.num_heads = num_heads
        self.num_layers = num_layers
        self.pool_type = pool_type
        self.post_norm = post_norm
        self.norm_eps = norm_eps

        # embeddings
        gain = 1.0 / math.sqrt(dim)
Dongz's avatar
Dongz committed
211
212
        self.patch_embedding = nn.Conv2d(3, dim, kernel_size=patch_size, stride=patch_size, bias=not pre_norm)
        if pool_type in ("token", "token_fc"):
helloyongyang's avatar
helloyongyang committed
213
            self.cls_embedding = nn.Parameter(gain * torch.randn(1, 1, dim))
Dongz's avatar
Dongz committed
214
        self.pos_embedding = nn.Parameter(gain * torch.randn(1, self.num_patches + (1 if pool_type in ("token", "token_fc") else 0), dim))
helloyongyang's avatar
helloyongyang committed
215
216
217
218
        self.dropout = nn.Dropout(embedding_dropout)

        # transformer
        self.pre_norm = LayerNorm(dim, eps=norm_eps) if pre_norm else None
Dongz's avatar
Dongz committed
219
        self.transformer = nn.Sequential(*[AttentionBlock(dim, mlp_ratio, num_heads, post_norm, False, activation, attn_dropout, proj_dropout, norm_eps) for _ in range(num_layers)])
helloyongyang's avatar
helloyongyang committed
220
221
222
        self.post_norm = LayerNorm(dim, eps=norm_eps)

        # head
Dongz's avatar
Dongz committed
223
        if pool_type == "token":
helloyongyang's avatar
helloyongyang committed
224
            self.head = nn.Parameter(gain * torch.randn(dim, out_dim))
Dongz's avatar
Dongz committed
225
        elif pool_type == "token_fc":
helloyongyang's avatar
helloyongyang committed
226
            self.head = nn.Linear(dim, out_dim)
Dongz's avatar
Dongz committed
227
228
        elif pool_type == "attn_pool":
            self.head = AttentionPool(dim, mlp_ratio, num_heads, activation, proj_dropout, norm_eps)
helloyongyang's avatar
helloyongyang committed
229
230
231
232
233
234

    def forward(self, x, interpolation=False, use_31_block=False):
        b = x.size(0)

        # embeddings
        x = self.patch_embedding(x).flatten(2).permute(0, 2, 1)
Dongz's avatar
Dongz committed
235
        if self.pool_type in ("token", "token_fc"):
helloyongyang's avatar
helloyongyang committed
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
            x = torch.cat([self.cls_embedding.expand(b, -1, -1), x], dim=1)
        if interpolation:
            e = pos_interpolate(self.pos_embedding, x.size(1))
        else:
            e = self.pos_embedding
        x = self.dropout(x + e)
        if self.pre_norm is not None:
            x = self.pre_norm(x)

        # transformer
        if use_31_block:
            x = self.transformer[:-1](x)
            return x
        else:
            x = self.transformer(x)
            return x


class XLMRobertaWithHead(XLMRoberta):
    def __init__(self, **kwargs):
Dongz's avatar
Dongz committed
256
        self.out_dim = kwargs.pop("out_dim")
helloyongyang's avatar
helloyongyang committed
257
258
259
260
        super().__init__(**kwargs)

        # head
        mid_dim = (self.dim + self.out_dim) // 2
Dongz's avatar
Dongz committed
261
        self.head = nn.Sequential(nn.Linear(self.dim, mid_dim, bias=False), nn.GELU(), nn.Linear(mid_dim, self.out_dim, bias=False))
helloyongyang's avatar
helloyongyang committed
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276

    def forward(self, ids):
        # xlm-roberta
        x = super().forward(ids)

        # average pooling
        mask = ids.ne(self.pad_id).unsqueeze(-1).to(x)
        x = (x * mask).sum(dim=1) / mask.sum(dim=1)

        # head
        x = self.head(x)
        return x


class XLMRobertaCLIP(nn.Module):
Dongz's avatar
Dongz committed
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
    def __init__(
        self,
        embed_dim=1024,
        image_size=224,
        patch_size=14,
        vision_dim=1280,
        vision_mlp_ratio=4,
        vision_heads=16,
        vision_layers=32,
        vision_pool="token",
        vision_pre_norm=True,
        vision_post_norm=False,
        activation="gelu",
        vocab_size=250002,
        max_text_len=514,
        type_size=1,
        pad_id=1,
        text_dim=1024,
        text_heads=16,
        text_layers=24,
        text_post_norm=True,
        text_dropout=0.1,
        attn_dropout=0.0,
        proj_dropout=0.0,
        embedding_dropout=0.0,
        norm_eps=1e-5,
    ):
helloyongyang's avatar
helloyongyang committed
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
        super().__init__()
        self.embed_dim = embed_dim
        self.image_size = image_size
        self.patch_size = patch_size
        self.vision_dim = vision_dim
        self.vision_mlp_ratio = vision_mlp_ratio
        self.vision_heads = vision_heads
        self.vision_layers = vision_layers
        self.vision_pre_norm = vision_pre_norm
        self.vision_post_norm = vision_post_norm
        self.activation = activation
        self.vocab_size = vocab_size
        self.max_text_len = max_text_len
        self.type_size = type_size
        self.pad_id = pad_id
        self.text_dim = text_dim
        self.text_heads = text_heads
        self.text_layers = text_layers
        self.text_post_norm = text_post_norm
        self.norm_eps = norm_eps

        # models
        self.visual = VisionTransformer(
            image_size=image_size,
            patch_size=patch_size,
            dim=vision_dim,
            mlp_ratio=vision_mlp_ratio,
            out_dim=embed_dim,
            num_heads=vision_heads,
            num_layers=vision_layers,
            pool_type=vision_pool,
            pre_norm=vision_pre_norm,
            post_norm=vision_post_norm,
            activation=activation,
            attn_dropout=attn_dropout,
            proj_dropout=proj_dropout,
            embedding_dropout=embedding_dropout,
Dongz's avatar
Dongz committed
341
342
            norm_eps=norm_eps,
        )
helloyongyang's avatar
helloyongyang committed
343
344
345
346
347
348
349
350
351
352
        self.textual = XLMRobertaWithHead(
            vocab_size=vocab_size,
            max_seq_len=max_text_len,
            type_size=type_size,
            pad_id=pad_id,
            dim=text_dim,
            out_dim=embed_dim,
            num_heads=text_heads,
            num_layers=text_layers,
            post_norm=text_post_norm,
Dongz's avatar
Dongz committed
353
354
            dropout=text_dropout,
        )
helloyongyang's avatar
helloyongyang committed
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
        self.log_scale = nn.Parameter(math.log(1 / 0.07) * torch.ones([]))

    def forward(self, imgs, txt_ids):
        """
        imgs:       [B, 3, H, W] of torch.float32.
        - mean:     [0.48145466, 0.4578275, 0.40821073]
        - std:      [0.26862954, 0.26130258, 0.27577711]
        txt_ids:    [B, L] of torch.long.
                    Encoded by data.CLIPTokenizer.
        """
        xi = self.visual(imgs)
        xt = self.textual(txt_ids)
        return xi, xt

    def param_groups(self):
Dongz's avatar
Dongz committed
370
371
372
373
        groups = [
            {"params": [p for n, p in self.named_parameters() if "norm" in n or n.endswith("bias")], "weight_decay": 0.0},
            {"params": [p for n, p in self.named_parameters() if not ("norm" in n or n.endswith("bias"))]},
        ]
helloyongyang's avatar
helloyongyang committed
374
375
376
        return groups


Dongz's avatar
Dongz committed
377
def _clip(pretrained=False, pretrained_name=None, model_cls=XLMRobertaCLIP, return_transforms=False, return_tokenizer=False, tokenizer_padding="eos", dtype=torch.float32, device="cpu", **kwargs):
helloyongyang's avatar
helloyongyang committed
378
379
380
381
382
383
384
385
386
387
388
    # init a model on device
    with torch.device(device):
        model = model_cls(**kwargs)

    # set device
    model = model.to(dtype=dtype, device=device)
    output = (model,)

    # init transforms
    if return_transforms:
        # mean and std
Dongz's avatar
Dongz committed
389
        if "siglip" in pretrained_name.lower():
helloyongyang's avatar
helloyongyang committed
390
391
392
393
394
395
            mean, std = [0.5, 0.5, 0.5], [0.5, 0.5, 0.5]
        else:
            mean = [0.48145466, 0.4578275, 0.40821073]
            std = [0.26862954, 0.26130258, 0.27577711]

        # transforms
Dongz's avatar
Dongz committed
396
        transforms = T.Compose([T.Resize((model.image_size, model.image_size), interpolation=T.InterpolationMode.BICUBIC), T.ToTensor(), T.Normalize(mean=mean, std=std)])
helloyongyang's avatar
helloyongyang committed
397
398
399
400
        output += (transforms,)
    return output[0] if len(output) == 1 else output


Dongz's avatar
Dongz committed
401
def clip_xlm_roberta_vit_h_14(pretrained=False, pretrained_name="open-clip-xlm-roberta-large-vit-huge-14", **kwargs):
helloyongyang's avatar
helloyongyang committed
402
403
404
405
406
407
408
409
    cfg = dict(
        embed_dim=1024,
        image_size=224,
        patch_size=14,
        vision_dim=1280,
        vision_mlp_ratio=4,
        vision_heads=16,
        vision_layers=32,
Dongz's avatar
Dongz committed
410
411
        vision_pool="token",
        activation="gelu",
helloyongyang's avatar
helloyongyang committed
412
413
414
415
416
417
418
419
420
421
422
        vocab_size=250002,
        max_text_len=514,
        type_size=1,
        pad_id=1,
        text_dim=1024,
        text_heads=16,
        text_layers=24,
        text_post_norm=True,
        text_dropout=0.1,
        attn_dropout=0.0,
        proj_dropout=0.0,
Dongz's avatar
Dongz committed
423
424
        embedding_dropout=0.0,
    )
helloyongyang's avatar
helloyongyang committed
425
426
427
428
429
430
431
432
433
434
435
436
    cfg.update(**kwargs)
    return _clip(pretrained, pretrained_name, XLMRobertaCLIP, **cfg)


class CLIPModel:
    def __init__(self, dtype, device, checkpoint_path, tokenizer_path):
        self.dtype = dtype
        self.device = device
        self.checkpoint_path = checkpoint_path
        self.tokenizer_path = tokenizer_path

        # init model
Dongz's avatar
Dongz committed
437
        self.model, self.transforms = clip_xlm_roberta_vit_h_14(pretrained=False, return_transforms=True, return_tokenizer=False, dtype=dtype, device=device)
helloyongyang's avatar
helloyongyang committed
438
        self.model = self.model.eval().requires_grad_(False)
Dongz's avatar
Dongz committed
439
440
        logging.info(f"loading {checkpoint_path}")
        self.model.load_state_dict(torch.load(checkpoint_path, map_location="cpu", weights_only=True))
helloyongyang's avatar
helloyongyang committed
441
442

        # init tokenizer
Dongz's avatar
Dongz committed
443
        self.tokenizer = HuggingfaceTokenizer(name=tokenizer_path, seq_len=self.model.max_text_len - 2, clean="whitespace")
helloyongyang's avatar
helloyongyang committed
444

gushiqiao's avatar
gushiqiao committed
445
446
447
    def visual(self, videos, args):
        if args.cpu_offload:
            self.to_cuda()
helloyongyang's avatar
helloyongyang committed
448
449
        # preprocess
        size = (self.model.image_size,) * 2
Dongz's avatar
Dongz committed
450
        videos = torch.cat([F.interpolate(u.transpose(0, 1), size=size, mode="bicubic", align_corners=False) for u in videos])
helloyongyang's avatar
helloyongyang committed
451
452
453
        videos = self.transforms.transforms[-1](videos.mul_(0.5).add_(0.5))

        # forward
Dongz's avatar
Dongz committed
454
        with torch.amp.autocast("cuda", dtype=self.dtype):
helloyongyang's avatar
helloyongyang committed
455
            out = self.model.visual(videos, use_31_block=True)
gushiqiao's avatar
gushiqiao committed
456
457
458
459
460
461
462
463
464
465

        if args.cpu_offload:
            self.to_cpu()
        return out

    def to_cuda(self):
        self.model = self.model.cuda()

    def to_cpu(self):
        self.model = self.model.cpu()