face_encoder.py 5.91 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
import math

import torch
import torch.nn.functional as F
from einops import rearrange
from torch import nn

try:
    from flash_attn import flash_attn_func, flash_attn_qkvpacked_func  # noqa: F401
except ImportError:
    flash_attn_func = None

MEMORY_LAYOUT = {
    "flash": (
        lambda x: x.view(x.shape[0] * x.shape[1], *x.shape[2:]),
        lambda x: x,
    ),
    "torch": (
        lambda x: x.transpose(1, 2),
        lambda x: x.transpose(1, 2),
    ),
    "vanilla": (
        lambda x: x.transpose(1, 2),
        lambda x: x.transpose(1, 2),
    ),
}


def attention(
    q,
    k,
    v,
    mode="flash",
    drop_rate=0,
    attn_mask=None,
    causal=False,
    max_seqlen_q=None,
    batch_size=1,
):
    """
    Perform QKV self attention.

    Args:
        q (torch.Tensor): Query tensor with shape [b, s, a, d], where a is the number of heads.
        k (torch.Tensor): Key tensor with shape [b, s1, a, d]
        v (torch.Tensor): Value tensor with shape [b, s1, a, d]
        mode (str): Attention mode. Choose from 'self_flash', 'cross_flash', 'torch', and 'vanilla'.
        drop_rate (float): Dropout rate in attention map. (default: 0)
        attn_mask (torch.Tensor): Attention mask with shape [b, s1] (cross_attn), or [b, a, s, s1] (torch or vanilla).
            (default: None)
        causal (bool): Whether to use causal attention. (default: False)
        cu_seqlens_q (torch.Tensor): dtype torch.int32. The cumulative sequence lengths of the sequences in the batch,
            used to index into q.
        cu_seqlens_kv (torch.Tensor): dtype torch.int32. The cumulative sequence lengths of the sequences in the batch,
            used to index into kv.
        max_seqlen_q (int): The maximum sequence length in the batch of q.
        max_seqlen_kv (int): The maximum sequence length in the batch of k and v.

    Returns:
        torch.Tensor: Output tensor after self attention with shape [b, s, ad]
    """
    pre_attn_layout, post_attn_layout = MEMORY_LAYOUT[mode]

    if mode == "torch":
        if attn_mask is not None and attn_mask.dtype != torch.bool:
            attn_mask = attn_mask.to(q.dtype)
        x = F.scaled_dot_product_attention(q, k, v, attn_mask=attn_mask, dropout_p=drop_rate, is_causal=causal)

    elif mode == "flash":
        x = flash_attn_func(
            q,
            k,
            v,
        )
        x = x.view(batch_size, max_seqlen_q, x.shape[-2], x.shape[-1])  # reshape x to [b, s, a, d]
    elif mode == "vanilla":
        scale_factor = 1 / math.sqrt(q.size(-1))

        b, a, s, _ = q.shape
        s1 = k.size(2)
        attn_bias = torch.zeros(b, a, s, s1, dtype=q.dtype, device=q.device)
        if causal:
            # Only applied to self attention
            assert attn_mask is None, "Causal mask and attn_mask cannot be used together"
            temp_mask = torch.ones(b, a, s, s, dtype=torch.bool, device=q.device).tril(diagonal=0)
            attn_bias.masked_fill_(temp_mask.logical_not(), float("-inf"))
            attn_bias.to(q.dtype)

        if attn_mask is not None:
            if attn_mask.dtype == torch.bool:
                attn_bias.masked_fill_(attn_mask.logical_not(), float("-inf"))
            else:
                attn_bias += attn_mask

        attn = (q @ k.transpose(-2, -1)) * scale_factor
        attn += attn_bias
        attn = attn.softmax(dim=-1)
        attn = torch.dropout(attn, p=drop_rate, train=True)
        x = attn @ v
    else:
        raise NotImplementedError(f"Unsupported attention mode: {mode}")

    x = post_attn_layout(x)
    b, s, a, d = x.shape
    out = x.reshape(b, s, -1)
    return out


class CausalConv1d(nn.Module):
    def __init__(self, chan_in, chan_out, kernel_size=3, stride=1, dilation=1, pad_mode="replicate", **kwargs):
        super().__init__()

        self.pad_mode = pad_mode
        padding = (kernel_size - 1, 0)  # T
        self.time_causal_padding = padding

        self.conv = nn.Conv1d(chan_in, chan_out, kernel_size, stride=stride, dilation=dilation, **kwargs)

    def forward(self, x):
        x = F.pad(x, self.time_causal_padding, mode=self.pad_mode)
        return self.conv(x)


class FaceEncoder(nn.Module):
    def __init__(self, in_dim: int, hidden_dim: int, num_heads=int, dtype=None, device=None):
        factory_kwargs = {"dtype": dtype, "device": device}
        super().__init__()

        self.num_heads = num_heads
        self.conv1_local = CausalConv1d(in_dim, 1024 * num_heads, 3, stride=1)
        self.norm1 = nn.LayerNorm(hidden_dim // 8, elementwise_affine=False, eps=1e-6, **factory_kwargs)
        self.act = nn.SiLU()
        self.conv2 = CausalConv1d(1024, 1024, 3, stride=2)
        self.conv3 = CausalConv1d(1024, 1024, 3, stride=2)

        self.out_proj = nn.Linear(1024, hidden_dim)
        self.norm1 = nn.LayerNorm(1024, elementwise_affine=False, eps=1e-6, **factory_kwargs)

        self.norm2 = nn.LayerNorm(1024, elementwise_affine=False, eps=1e-6, **factory_kwargs)

        self.norm3 = nn.LayerNorm(1024, elementwise_affine=False, eps=1e-6, **factory_kwargs)

        self.padding_tokens = nn.Parameter(torch.zeros(1, 1, 1, hidden_dim))

    def forward(self, x):
        x = rearrange(x, "b t c -> b c t")
        b, c, t = x.shape

        x = self.conv1_local(x)
        x = rearrange(x, "b (n c) t -> (b n) t c", n=self.num_heads)

        x = self.norm1(x)
        x = self.act(x)
        x = rearrange(x, "b t c -> b c t")
        x = self.conv2(x)
        x = rearrange(x, "b c t -> b t c")
        x = self.norm2(x)
        x = self.act(x)
        x = rearrange(x, "b t c -> b c t")
        x = self.conv3(x)
        x = rearrange(x, "b c t -> b t c")
        x = self.norm3(x)
        x = self.act(x)
        x = self.out_proj(x)
        x = rearrange(x, "(b n) t c -> b t n c", b=b)
        padding = self.padding_tokens.repeat(b, x.shape[1], 1, 1)
        x = torch.cat([x, padding], dim=-2)
        x_local = x.clone()

        return x_local