utils.py 7.4 KB
Newer Older
helloyongyang's avatar
helloyongyang committed
1
import torch
helloyongyang's avatar
helloyongyang committed
2
import torch.distributed as dist
Gu Shiqiao's avatar
Gu Shiqiao committed
3
4
5
6
7

try:
    from flashinfer.rope import apply_rope_with_cos_sin_cache_inplace
except ImportError:
    apply_rope_with_cos_sin_cache_inplace = None
PengGao's avatar
PengGao committed
8

gushiqiao's avatar
gushiqiao committed
9
from lightx2v.utils.envs import *
helloyongyang's avatar
helloyongyang committed
10
11


12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
def apply_wan_rope_with_torch(
    xq: torch.Tensor,
    xk: torch.Tensor,
    cos_sin_cache: torch.Tensor,
):
    n = xq.size(1)
    seq_len = cos_sin_cache.size(0)

    xq = torch.view_as_complex(xq[:seq_len].to(torch.float32).reshape(seq_len, n, -1, 2))
    xk = torch.view_as_complex(xk[:seq_len].to(torch.float32).reshape(seq_len, n, -1, 2))
    # Apply rotary embedding
    xq = torch.view_as_real(xq * cos_sin_cache).flatten(2)
    xk = torch.view_as_real(xk * cos_sin_cache).flatten(2)
    xq = torch.cat([xq, xq[seq_len:]])
    xk = torch.cat([xk, xk[seq_len:]])

    return xq.to(GET_DTYPE()), xk.to(GET_DTYPE())


def apply_wan_rope_with_chunk(
    xq: torch.Tensor,
    xk: torch.Tensor,
    cos_sin_cache: torch.Tensor,
    chunk_size: int,
    rope_func,
):
    seq_len = cos_sin_cache.size(0)

    xq_output_chunks = []
    xk_output_chunks = []
    for start in range(0, seq_len, chunk_size):
        end = min(start + chunk_size, seq_len)
        xq_chunk = xq[start:end]
        xk_chunk = xk[start:end]
        cos_sin_chunk = cos_sin_cache[start:end]

        xq_chunk, xk_chunk = rope_func(xq_chunk, xk_chunk, cos_sin_chunk)
        xq_output_chunks.append(xq_chunk)
        xk_output_chunks.append(xk_chunk)
        torch.cuda.empty_cache()

    x_q = torch.cat(xq_output_chunks, dim=0)
    del xq_output_chunks
    torch.cuda.empty_cache()

    x_k = torch.cat(xk_output_chunks, dim=0)
    del xk_output_chunks
    torch.cuda.empty_cache()

    return x_q.to(GET_DTYPE()), x_k.to(GET_DTYPE())


def apply_wan_rope_with_flashinfer(
    xq: torch.Tensor,
    xk: torch.Tensor,
    cos_sin_cache: torch.Tensor,
):
    L, H, D = xq.shape

    query = xq.reshape(L, H * D).contiguous()
    key = xk.reshape(L, H * D).contiguous()

    positions = torch.arange(L, device="cpu", dtype=torch.long).to(xq.device, non_blocking=True)

    apply_rope_with_cos_sin_cache_inplace(
        positions=positions,
        query=query,
        key=key,
        head_size=D,
        cos_sin_cache=cos_sin_cache,
        is_neox=False,
    )

    xq_out = query.view(L, H, D)
    xk_out = key.view(L, H, D)
    return xq_out, xk_out


helloyongyang's avatar
helloyongyang committed
90
91
def compute_freqs(c, grid_sizes, freqs):
    freqs = freqs.split([c - 2 * (c // 3), c // 3, c // 3], dim=1)
92
    f, h, w = grid_sizes
helloyongyang's avatar
helloyongyang committed
93
94
95
96
97
98
99
100
101
102
103
104
    seq_len = f * h * w
    freqs_i = torch.cat(
        [
            freqs[0][:f].view(f, 1, 1, -1).expand(f, h, w, -1),
            freqs[1][:h].view(1, h, 1, -1).expand(f, h, w, -1),
            freqs[2][:w].view(1, 1, w, -1).expand(f, h, w, -1),
        ],
        dim=-1,
    ).reshape(seq_len, 1, -1)

    return freqs_i

105

helloyongyang's avatar
helloyongyang committed
106
107
108
109
def compute_freqs_dist(s, c, grid_sizes, freqs, seq_p_group):
    world_size = dist.get_world_size(seq_p_group)
    cur_rank = dist.get_rank(seq_p_group)
    freqs = freqs.split([c - 2 * (c // 3), c // 3, c // 3], dim=1)
110
    f, h, w = grid_sizes
helloyongyang's avatar
helloyongyang committed
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
    seq_len = f * h * w
    freqs_i = torch.cat(
        [
            freqs[0][:f].view(f, 1, 1, -1).expand(f, h, w, -1),
            freqs[1][:h].view(1, h, 1, -1).expand(f, h, w, -1),
            freqs[2][:w].view(1, 1, w, -1).expand(f, h, w, -1),
        ],
        dim=-1,
    ).reshape(seq_len, 1, -1)

    freqs_i = pad_freqs(freqs_i, s * world_size)
    s_per_rank = s
    freqs_i_rank = freqs_i[(cur_rank * s_per_rank) : ((cur_rank + 1) * s_per_rank), :, :]
    return freqs_i_rank


Zhuguanyu Wu's avatar
Zhuguanyu Wu committed
127
def compute_freqs_causvid(c, grid_sizes, freqs, start_frame=0):
128
    freqs = freqs.split([c - 2 * (c // 3), c // 3, c // 3], dim=1)
129
    f, h, w = grid_sizes
130
131
132
133
134
135
136
137
138
139
140
141
    seq_len = f * h * w
    freqs_i = torch.cat(
        [
            freqs[0][start_frame : start_frame + f].view(f, 1, 1, -1).expand(f, h, w, -1),
            freqs[1][:h].view(1, h, 1, -1).expand(f, h, w, -1),
            freqs[2][:w].view(1, 1, w, -1).expand(f, h, w, -1),
        ],
        dim=-1,
    ).reshape(seq_len, 1, -1)

    return freqs_i

helloyongyang's avatar
helloyongyang committed
142

Xinchi Huang's avatar
Xinchi Huang committed
143
144
145
def pad_freqs(original_tensor, target_len):
    seq_len, s1, s2 = original_tensor.shape
    pad_size = target_len - seq_len
Dongz's avatar
Dongz committed
146
    padding_tensor = torch.ones(pad_size, s1, s2, dtype=original_tensor.dtype, device=original_tensor.device)
Xinchi Huang's avatar
Xinchi Huang committed
147
148
149
150
    padded_tensor = torch.cat([original_tensor, padding_tensor], dim=0)
    return padded_tensor


helloyongyang's avatar
helloyongyang committed
151
152
153
154
def apply_rotary_emb(x, freqs_i):
    n = x.size(1)
    seq_len = freqs_i.size(0)

gushiqiao's avatar
gushiqiao committed
155
    x_i = torch.view_as_complex(x[:seq_len].to(torch.float32).reshape(seq_len, n, -1, 2))
helloyongyang's avatar
helloyongyang committed
156
157
    # Apply rotary embedding
    x_i = torch.view_as_real(x_i * freqs_i).flatten(2)
gushiqiao's avatar
gushiqiao committed
158
    x_i = torch.cat([x_i, x[seq_len:]])
159
    return x_i.to(GET_DTYPE())
helloyongyang's avatar
helloyongyang committed
160
161


gushiqiao's avatar
gushiqiao committed
162
def apply_rotary_emb_chunk(x, freqs_i, chunk_size, remaining_chunk_size=100):
gushiqiao's avatar
gushiqiao committed
163
164
165
166
167
168
169
170
171
172
    n = x.size(1)
    seq_len = freqs_i.size(0)

    output_chunks = []
    for start in range(0, seq_len, chunk_size):
        end = min(start + chunk_size, seq_len)
        x_chunk = x[start:end]
        freqs_chunk = freqs_i[start:end]

        x_chunk_complex = torch.view_as_complex(x_chunk.to(torch.float32).reshape(end - start, n, -1, 2))
173
        x_chunk_embedded = torch.view_as_real(x_chunk_complex * freqs_chunk).flatten(2).to(GET_DTYPE())
gushiqiao's avatar
gushiqiao committed
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
        output_chunks.append(x_chunk_embedded)
        del x_chunk_complex, x_chunk_embedded
        torch.cuda.empty_cache()

    result = []
    for chunk in output_chunks:
        result.append(chunk)
    del output_chunks
    torch.cuda.empty_cache()

    for start in range(seq_len, x.size(0), remaining_chunk_size):
        end = min(start + remaining_chunk_size, x.size(0))
        result.append(x[start:end])

    x_i = torch.cat(result, dim=0)
    del result
    torch.cuda.empty_cache()

192
    return x_i.to(GET_DTYPE())
gushiqiao's avatar
gushiqiao committed
193
194


helloyongyang's avatar
helloyongyang committed
195
196
197
198
def rope_params(max_seq_len, dim, theta=10000):
    assert dim % 2 == 0
    freqs = torch.outer(
        torch.arange(max_seq_len),
gushiqiao's avatar
gushiqiao committed
199
        1.0 / torch.pow(theta, torch.arange(0, dim, 2).to(torch.float32).div(dim)),
helloyongyang's avatar
helloyongyang committed
200
201
202
203
204
205
206
207
208
    )
    freqs = torch.polar(torch.ones_like(freqs), freqs)
    return freqs


def sinusoidal_embedding_1d(dim, position):
    # preprocess
    assert dim % 2 == 0
    half = dim // 2
gushiqiao's avatar
gushiqiao committed
209
    position = position.type(torch.float32)
helloyongyang's avatar
helloyongyang committed
210
211

    # calculation
Dongz's avatar
Dongz committed
212
    sinusoid = torch.outer(position, torch.pow(10000, -torch.arange(half).to(position).div(half)))
gushiqiao's avatar
gushiqiao committed
213
    x = torch.cat([torch.cos(sinusoid), torch.sin(sinusoid)], dim=1)
214
    x = x.to(GET_SENSITIVE_DTYPE())
gushiqiao's avatar
gushiqiao committed
215
    return x
216
217


GoatWu's avatar
GoatWu committed
218
def guidance_scale_embedding(w, embedding_dim=256, cfg_range=(1.0, 6.0), target_range=1000.0, dtype=torch.float32):
219
220
221
222
223
224
225
226
227
228
229
    """
    Args:
    timesteps: torch.Tensor: generate embedding vectors at these timesteps
    embedding_dim: int: dimension of the embeddings to generate
    dtype: data type of the generated embeddings

    Returns:
    embedding vectors with shape `(len(timesteps), embedding_dim)`
    """
    assert len(w.shape) == 1
    cfg_min, cfg_max = cfg_range
230
231
    w = torch.round(w)
    w = torch.clamp(w, min=cfg_min, max=cfg_max)
232
233
234
235
236
237
    w = (w - cfg_min) / (cfg_max - cfg_min)  # [0, 1]
    w = w * target_range
    half_dim = embedding_dim // 2
    emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1)
    emb = torch.exp(torch.arange(half_dim, dtype=dtype).to(w.device) * -emb).to(w.device)
    emb = w.to(dtype)[:, None] * emb[None, :]
238
    emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
239
240
241
242
    if embedding_dim % 2 == 1:  # zero pad
        emb = torch.nn.functional.pad(emb, (0, 1).to(w.device))
    assert emb.shape == (w.shape[0], embedding_dim)
    return emb