vae.py 33.3 KB
Newer Older
helloyongyang's avatar
helloyongyang committed
1
2
3
4
5
6
7
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
import logging

import torch
import torch.cuda.amp as amp
import torch.nn as nn
import torch.nn.functional as F
Xinchi Huang's avatar
Xinchi Huang committed
8
import torch.distributed as dist
helloyongyang's avatar
helloyongyang committed
9
from einops import rearrange
10
from lightx2v.utils.memory_profiler import peak_memory_decorator
root's avatar
root committed
11
from loguru import logger
helloyongyang's avatar
helloyongyang committed
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

__all__ = [
    "WanVAE",
]

CACHE_T = 2


class CausalConv3d(nn.Conv3d):
    """
    Causal 3d convolusion.
    """

    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self._padding = (
            self.padding[2],
            self.padding[2],
            self.padding[1],
            self.padding[1],
            2 * self.padding[0],
            0,
        )
        self.padding = (0, 0, 0)

    def forward(self, x, cache_x=None):
        padding = list(self._padding)
        if cache_x is not None and self._padding[4] > 0:
            cache_x = cache_x.to(x.device)
            x = torch.cat([cache_x, x], dim=2)
            padding[4] -= cache_x.shape[2]
        x = F.pad(x, padding)

        return super().forward(x)


class RMS_norm(nn.Module):
    def __init__(self, dim, channel_first=True, images=True, bias=False):
        super().__init__()
        broadcastable_dims = (1, 1, 1) if not images else (1, 1)
        shape = (dim, *broadcastable_dims) if channel_first else (dim,)

        self.channel_first = channel_first
        self.scale = dim**0.5
        self.gamma = nn.Parameter(torch.ones(shape))
        self.bias = nn.Parameter(torch.zeros(shape)) if bias else 0.0

    def forward(self, x):
Dongz's avatar
Dongz committed
60
        return F.normalize(x, dim=(1 if self.channel_first else -1)) * self.scale * self.gamma + self.bias
helloyongyang's avatar
helloyongyang committed
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97


class Upsample(nn.Upsample):
    def forward(self, x):
        """
        Fix bfloat16 support for nearest neighbor interpolation.
        """
        return super().forward(x.float()).type_as(x)


class Resample(nn.Module):
    def __init__(self, dim, mode):
        assert mode in (
            "none",
            "upsample2d",
            "upsample3d",
            "downsample2d",
            "downsample3d",
        )
        super().__init__()
        self.dim = dim
        self.mode = mode

        # layers
        if mode == "upsample2d":
            self.resample = nn.Sequential(
                Upsample(scale_factor=(2.0, 2.0), mode="nearest-exact"),
                nn.Conv2d(dim, dim // 2, 3, padding=1),
            )
        elif mode == "upsample3d":
            self.resample = nn.Sequential(
                Upsample(scale_factor=(2.0, 2.0), mode="nearest-exact"),
                nn.Conv2d(dim, dim // 2, 3, padding=1),
            )
            self.time_conv = CausalConv3d(dim, dim * 2, (3, 1, 1), padding=(1, 0, 0))

        elif mode == "downsample2d":
Dongz's avatar
Dongz committed
98
            self.resample = nn.Sequential(nn.ZeroPad2d((0, 1, 0, 1)), nn.Conv2d(dim, dim, 3, stride=(2, 2)))
helloyongyang's avatar
helloyongyang committed
99
        elif mode == "downsample3d":
Dongz's avatar
Dongz committed
100
101
            self.resample = nn.Sequential(nn.ZeroPad2d((0, 1, 0, 1)), nn.Conv2d(dim, dim, 3, stride=(2, 2)))
            self.time_conv = CausalConv3d(dim, dim, (3, 1, 1), stride=(2, 1, 1), padding=(0, 0, 0))
helloyongyang's avatar
helloyongyang committed
102
103
104
105
106
107
108
109
110
111
112
113
114
115

        else:
            self.resample = nn.Identity()

    def forward(self, x, feat_cache=None, feat_idx=[0]):
        b, c, t, h, w = x.size()
        if self.mode == "upsample3d":
            if feat_cache is not None:
                idx = feat_idx[0]
                if feat_cache[idx] is None:
                    feat_cache[idx] = "Rep"
                    feat_idx[0] += 1
                else:
                    cache_x = x[:, :, -CACHE_T:, :, :].clone()
Dongz's avatar
Dongz committed
116
                    if cache_x.shape[2] < 2 and feat_cache[idx] is not None and feat_cache[idx] != "Rep":
helloyongyang's avatar
helloyongyang committed
117
118
119
                        # cache last frame of last two chunk
                        cache_x = torch.cat(
                            [
Dongz's avatar
Dongz committed
120
                                feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(cache_x.device),
helloyongyang's avatar
helloyongyang committed
121
122
123
124
                                cache_x,
                            ],
                            dim=2,
                        )
Dongz's avatar
Dongz committed
125
                    if cache_x.shape[2] < 2 and feat_cache[idx] is not None and feat_cache[idx] == "Rep":
helloyongyang's avatar
helloyongyang committed
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
                        cache_x = torch.cat(
                            [torch.zeros_like(cache_x).to(cache_x.device), cache_x],
                            dim=2,
                        )
                    if feat_cache[idx] == "Rep":
                        x = self.time_conv(x)
                    else:
                        x = self.time_conv(x, feat_cache[idx])
                    feat_cache[idx] = cache_x
                    feat_idx[0] += 1

                    x = x.reshape(b, 2, c, t, h, w)
                    x = torch.stack((x[:, 0, :, :, :, :], x[:, 1, :, :, :, :]), 3)
                    x = x.reshape(b, c, t * 2, h, w)
        t = x.shape[2]
        x = rearrange(x, "b c t h w -> (b t) c h w")
        x = self.resample(x)
        x = rearrange(x, "(b t) c h w -> b c t h w", t=t)

        if self.mode == "downsample3d":
            if feat_cache is not None:
                idx = feat_idx[0]
                if feat_cache[idx] is None:
                    feat_cache[idx] = x.clone()
                    feat_idx[0] += 1
                else:
                    cache_x = x[:, :, -1:, :, :].clone()
                    # if cache_x.shape[2] < 2 and feat_cache[idx] is not None and feat_cache[idx]!='Rep':
                    #     # cache last frame of last two chunk
                    #     cache_x = torch.cat([feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(cache_x.device), cache_x], dim=2)

Dongz's avatar
Dongz committed
157
                    x = self.time_conv(torch.cat([feat_cache[idx][:, :, -1:, :, :], x], 2))
helloyongyang's avatar
helloyongyang committed
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
                    feat_cache[idx] = cache_x
                    feat_idx[0] += 1
        return x

    def init_weight(self, conv):
        conv_weight = conv.weight
        nn.init.zeros_(conv_weight)
        c1, c2, t, h, w = conv_weight.size()
        one_matrix = torch.eye(c1, c2)
        init_matrix = one_matrix
        nn.init.zeros_(conv_weight)
        # conv_weight.data[:,:,-1,1,1] = init_matrix * 0.5
        conv_weight.data[:, :, 1, 0, 0] = init_matrix  # * 0.5
        conv.weight.data.copy_(conv_weight)
        nn.init.zeros_(conv.bias.data)

    def init_weight2(self, conv):
        conv_weight = conv.weight.data
        nn.init.zeros_(conv_weight)
        c1, c2, t, h, w = conv_weight.size()
        init_matrix = torch.eye(c1 // 2, c2)
        # init_matrix = repeat(init_matrix, 'o ... -> (o 2) ...').permute(1,0,2).contiguous().reshape(c1,c2)
        conv_weight[: c1 // 2, :, -1, 0, 0] = init_matrix
        conv_weight[c1 // 2 :, :, -1, 0, 0] = init_matrix
        conv.weight.data.copy_(conv_weight)
        nn.init.zeros_(conv.bias.data)


class ResidualBlock(nn.Module):
    def __init__(self, in_dim, out_dim, dropout=0.0):
        super().__init__()
        self.in_dim = in_dim
        self.out_dim = out_dim

        # layers
        self.residual = nn.Sequential(
            RMS_norm(in_dim, images=False),
            nn.SiLU(),
            CausalConv3d(in_dim, out_dim, 3, padding=1),
            RMS_norm(out_dim, images=False),
            nn.SiLU(),
            nn.Dropout(dropout),
            CausalConv3d(out_dim, out_dim, 3, padding=1),
        )
Dongz's avatar
Dongz committed
202
        self.shortcut = CausalConv3d(in_dim, out_dim, 1) if in_dim != out_dim else nn.Identity()
helloyongyang's avatar
helloyongyang committed
203
204
205
206
207
208
209
210
211
212
213

    def forward(self, x, feat_cache=None, feat_idx=[0]):
        h = self.shortcut(x)
        for layer in self.residual:
            if isinstance(layer, CausalConv3d) and feat_cache is not None:
                idx = feat_idx[0]
                cache_x = x[:, :, -CACHE_T:, :, :].clone()
                if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
                    # cache last frame of last two chunk
                    cache_x = torch.cat(
                        [
Dongz's avatar
Dongz committed
214
                            feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(cache_x.device),
helloyongyang's avatar
helloyongyang committed
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
                            cache_x,
                        ],
                        dim=2,
                    )
                x = layer(x, feat_cache[idx])
                feat_cache[idx] = cache_x
                feat_idx[0] += 1
            else:
                x = layer(x)
        return x + h


class AttentionBlock(nn.Module):
    """
    Causal self-attention with a single head.
    """

    def __init__(self, dim):
        super().__init__()
        self.dim = dim

        # layers
        self.norm = RMS_norm(dim)
        self.to_qkv = nn.Conv2d(dim, dim * 3, 1)
        self.proj = nn.Conv2d(dim, dim, 1)

        # zero out the last layer params
        nn.init.zeros_(self.proj.weight)

    def forward(self, x):
        identity = x
        b, c, t, h, w = x.size()
        x = rearrange(x, "b c t h w -> (b t) c h w")
        x = self.norm(x)
        # compute query, key, value
Dongz's avatar
Dongz committed
250
        q, k, v = self.to_qkv(x).reshape(b * t, 1, c * 3, -1).permute(0, 1, 3, 2).contiguous().chunk(3, dim=-1)
helloyongyang's avatar
helloyongyang committed
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364

        # apply attention
        x = F.scaled_dot_product_attention(
            q,
            k,
            v,
        )
        x = x.squeeze(1).permute(0, 2, 1).reshape(b * t, c, h, w)

        # output
        x = self.proj(x)
        x = rearrange(x, "(b t) c h w-> b c t h w", t=t)
        return x + identity


class Encoder3d(nn.Module):
    def __init__(
        self,
        dim=128,
        z_dim=4,
        dim_mult=[1, 2, 4, 4],
        num_res_blocks=2,
        attn_scales=[],
        temperal_downsample=[True, True, False],
        dropout=0.0,
    ):
        super().__init__()
        self.dim = dim
        self.z_dim = z_dim
        self.dim_mult = dim_mult
        self.num_res_blocks = num_res_blocks
        self.attn_scales = attn_scales
        self.temperal_downsample = temperal_downsample

        # dimensions
        dims = [dim * u for u in [1] + dim_mult]
        scale = 1.0

        # init block
        self.conv1 = CausalConv3d(3, dims[0], 3, padding=1)

        # downsample blocks
        downsamples = []
        for i, (in_dim, out_dim) in enumerate(zip(dims[:-1], dims[1:])):
            # residual (+attention) blocks
            for _ in range(num_res_blocks):
                downsamples.append(ResidualBlock(in_dim, out_dim, dropout))
                if scale in attn_scales:
                    downsamples.append(AttentionBlock(out_dim))
                in_dim = out_dim

            # downsample block
            if i != len(dim_mult) - 1:
                mode = "downsample3d" if temperal_downsample[i] else "downsample2d"
                downsamples.append(Resample(out_dim, mode=mode))
                scale /= 2.0
        self.downsamples = nn.Sequential(*downsamples)

        # middle blocks
        self.middle = nn.Sequential(
            ResidualBlock(out_dim, out_dim, dropout),
            AttentionBlock(out_dim),
            ResidualBlock(out_dim, out_dim, dropout),
        )

        # output blocks
        self.head = nn.Sequential(
            RMS_norm(out_dim, images=False),
            nn.SiLU(),
            CausalConv3d(out_dim, z_dim, 3, padding=1),
        )

    def forward(self, x, feat_cache=None, feat_idx=[0]):
        if feat_cache is not None:
            idx = feat_idx[0]
            cache_x = x[:, :, -CACHE_T:, :, :].clone()
            if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
                # cache last frame of last two chunk
                cache_x = torch.cat(
                    [
                        feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(cache_x.device),
                        cache_x,
                    ],
                    dim=2,
                )
            x = self.conv1(x, feat_cache[idx])
            feat_cache[idx] = cache_x
            feat_idx[0] += 1
        else:
            x = self.conv1(x)

        ## downsamples
        for layer in self.downsamples:
            if feat_cache is not None:
                x = layer(x, feat_cache, feat_idx)
            else:
                x = layer(x)

        ## middle
        for layer in self.middle:
            if isinstance(layer, ResidualBlock) and feat_cache is not None:
                x = layer(x, feat_cache, feat_idx)
            else:
                x = layer(x)

        ## head
        for layer in self.head:
            if isinstance(layer, CausalConv3d) and feat_cache is not None:
                idx = feat_idx[0]
                cache_x = x[:, :, -CACHE_T:, :, :].clone()
                if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
                    # cache last frame of last two chunk
                    cache_x = torch.cat(
                        [
Dongz's avatar
Dongz committed
365
                            feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(cache_x.device),
helloyongyang's avatar
helloyongyang committed
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
                            cache_x,
                        ],
                        dim=2,
                    )
                x = layer(x, feat_cache[idx])
                feat_cache[idx] = cache_x
                feat_idx[0] += 1
            else:
                x = layer(x)
        return x


class Decoder3d(nn.Module):
    def __init__(
        self,
        dim=128,
        z_dim=4,
        dim_mult=[1, 2, 4, 4],
        num_res_blocks=2,
        attn_scales=[],
        temperal_upsample=[False, True, True],
        dropout=0.0,
    ):
        super().__init__()
        self.dim = dim
        self.z_dim = z_dim
        self.dim_mult = dim_mult
        self.num_res_blocks = num_res_blocks
        self.attn_scales = attn_scales
        self.temperal_upsample = temperal_upsample

        # dimensions
        dims = [dim * u for u in [dim_mult[-1]] + dim_mult[::-1]]
        scale = 1.0 / 2 ** (len(dim_mult) - 2)

        # init block
        self.conv1 = CausalConv3d(z_dim, dims[0], 3, padding=1)

        # middle blocks
        self.middle = nn.Sequential(
            ResidualBlock(dims[0], dims[0], dropout),
            AttentionBlock(dims[0]),
            ResidualBlock(dims[0], dims[0], dropout),
        )

        # upsample blocks
        upsamples = []
        for i, (in_dim, out_dim) in enumerate(zip(dims[:-1], dims[1:])):
            # residual (+attention) blocks
            if i == 1 or i == 2 or i == 3:
                in_dim = in_dim // 2
            for _ in range(num_res_blocks + 1):
                upsamples.append(ResidualBlock(in_dim, out_dim, dropout))
                if scale in attn_scales:
                    upsamples.append(AttentionBlock(out_dim))
                in_dim = out_dim

            # upsample block
            if i != len(dim_mult) - 1:
                mode = "upsample3d" if temperal_upsample[i] else "upsample2d"
                upsamples.append(Resample(out_dim, mode=mode))
                scale *= 2.0
        self.upsamples = nn.Sequential(*upsamples)

        # output blocks
        self.head = nn.Sequential(
            RMS_norm(out_dim, images=False),
            nn.SiLU(),
            CausalConv3d(out_dim, 3, 3, padding=1),
        )

    def forward(self, x, feat_cache=None, feat_idx=[0]):
        ## conv1
        if feat_cache is not None:
            idx = feat_idx[0]
            cache_x = x[:, :, -CACHE_T:, :, :].clone()
            if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
                # cache last frame of last two chunk
                cache_x = torch.cat(
                    [
                        feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(cache_x.device),
                        cache_x,
                    ],
                    dim=2,
                )
            x = self.conv1(x, feat_cache[idx])
            feat_cache[idx] = cache_x
            feat_idx[0] += 1
        else:
            x = self.conv1(x)

        ## middle
        for layer in self.middle:
            if isinstance(layer, ResidualBlock) and feat_cache is not None:
                x = layer(x, feat_cache, feat_idx)
            else:
                x = layer(x)

        ## upsamples
        for layer in self.upsamples:
            if feat_cache is not None:
                x = layer(x, feat_cache, feat_idx)
            else:
                x = layer(x)

        ## head
        for layer in self.head:
            if isinstance(layer, CausalConv3d) and feat_cache is not None:
                idx = feat_idx[0]
                cache_x = x[:, :, -CACHE_T:, :, :].clone()
                if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
                    # cache last frame of last two chunk
                    cache_x = torch.cat(
                        [
Dongz's avatar
Dongz committed
480
                            feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(cache_x.device),
helloyongyang's avatar
helloyongyang committed
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
                            cache_x,
                        ],
                        dim=2,
                    )
                x = layer(x, feat_cache[idx])
                feat_cache[idx] = cache_x
                feat_idx[0] += 1
            else:
                x = layer(x)
        return x


def count_conv3d(model):
    count = 0
    for m in model.modules():
        if isinstance(m, CausalConv3d):
            count += 1
    return count


class WanVAE_(nn.Module):
    def __init__(
        self,
        dim=128,
        z_dim=4,
        dim_mult=[1, 2, 4, 4],
        num_res_blocks=2,
        attn_scales=[],
        temperal_downsample=[True, True, False],
        dropout=0.0,
    ):
        super().__init__()
        self.dim = dim
        self.z_dim = z_dim
        self.dim_mult = dim_mult
        self.num_res_blocks = num_res_blocks
        self.attn_scales = attn_scales
        self.temperal_downsample = temperal_downsample
        self.temperal_upsample = temperal_downsample[::-1]
520
        self.spatial_compression_ratio = 2 ** len(self.temperal_downsample)
helloyongyang's avatar
helloyongyang committed
521

522
523
524
525
526
527
528
        # The minimal tile height and width for spatial tiling to be used
        self.tile_sample_min_height = 256
        self.tile_sample_min_width = 256

        # The minimal distance between two spatial tiles
        self.tile_sample_stride_height = 192
        self.tile_sample_stride_width = 192
helloyongyang's avatar
helloyongyang committed
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
        # modules
        self.encoder = Encoder3d(
            dim,
            z_dim * 2,
            dim_mult,
            num_res_blocks,
            attn_scales,
            self.temperal_downsample,
            dropout,
        )
        self.conv1 = CausalConv3d(z_dim * 2, z_dim * 2, 1)
        self.conv2 = CausalConv3d(z_dim, z_dim, 1)
        self.decoder = Decoder3d(
            dim,
            z_dim,
            dim_mult,
            num_res_blocks,
            attn_scales,
            self.temperal_upsample,
            dropout,
        )

    def forward(self, x):
        mu, log_var = self.encode(x)
        z = self.reparameterize(mu, log_var)
        x_recon = self.decode(z)
        return x_recon, mu, log_var

557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
    def blend_v(self, a, b, blend_extent):
        blend_extent = min(a.shape[-2], b.shape[-2], blend_extent)
        for y in range(blend_extent):
            b[:, :, :, y, :] = a[:, :, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, :, y, :] * (y / blend_extent)
        return b

    def blend_h(self, a, b, blend_extent):
        blend_extent = min(a.shape[-1], b.shape[-1], blend_extent)
        for x in range(blend_extent):
            b[:, :, :, :, x] = a[:, :, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, :, x] * (x / blend_extent)
        return b

    def tiled_encode(self, x, scale):
        _, _, num_frames, height, width = x.shape
        latent_height = height // self.spatial_compression_ratio
        latent_width = width // self.spatial_compression_ratio

        tile_latent_min_height = self.tile_sample_min_height // self.spatial_compression_ratio
        tile_latent_min_width = self.tile_sample_min_width // self.spatial_compression_ratio
        tile_latent_stride_height = self.tile_sample_stride_height // self.spatial_compression_ratio
        tile_latent_stride_width = self.tile_sample_stride_width // self.spatial_compression_ratio

        blend_height = tile_latent_min_height - tile_latent_stride_height
        blend_width = tile_latent_min_width - tile_latent_stride_width

        # Split x into overlapping tiles and encode them separately.
        # The tiles have an overlap to avoid seams between tiles.
        rows = []
        for i in range(0, height, self.tile_sample_stride_height):
            row = []
            for j in range(0, width, self.tile_sample_stride_width):
                self.clear_cache()
                time = []
                frame_range = 1 + (num_frames - 1) // 4
                for k in range(frame_range):
                    self._enc_conv_idx = [0]
                    if k == 0:
                        tile = x[:, :, :1, i : i + self.tile_sample_min_height, j : j + self.tile_sample_min_width]
                    else:
                        tile = x[
                            :,
                            :,
                            1 + 4 * (k - 1) : 1 + 4 * k,
                            i : i + self.tile_sample_min_height,
                            j : j + self.tile_sample_min_width,
                        ]
                    tile = self.encoder(tile, feat_cache=self._enc_feat_map, feat_idx=self._enc_conv_idx)
                    mu, log_var = self.conv1(tile).chunk(2, dim=1)
                    if isinstance(scale[0], torch.Tensor):
                        mu = (mu - scale[0].view(1, self.z_dim, 1, 1, 1)) * scale[1].view(1, self.z_dim, 1, 1, 1)
                    else:
                        mu = (mu - scale[0]) * scale[1]

                    time.append(mu)

                row.append(torch.cat(time, dim=2))
            rows.append(row)
        self.clear_cache()

        result_rows = []
        for i, row in enumerate(rows):
            result_row = []
            for j, tile in enumerate(row):
                # blend the above tile and the left tile
                # to the current tile and add the current tile to the result row
                if i > 0:
                    tile = self.blend_v(rows[i - 1][j], tile, blend_height)
                if j > 0:
                    tile = self.blend_h(row[j - 1], tile, blend_width)
                result_row.append(tile[:, :, :, :tile_latent_stride_height, :tile_latent_stride_width])
            result_rows.append(torch.cat(result_row, dim=-1))

        enc = torch.cat(result_rows, dim=3)[:, :, :, :latent_height, :latent_width]
        return enc

    def tiled_decode(self, z, scale):
        if isinstance(scale[0], torch.Tensor):
            z = z / scale[1].view(1, self.z_dim, 1, 1, 1) + scale[0].view(1, self.z_dim, 1, 1, 1)
        else:
            z = z / scale[1] + scale[0]

        _, _, num_frames, height, width = z.shape
        sample_height = height * self.spatial_compression_ratio
        sample_width = width * self.spatial_compression_ratio

        tile_latent_min_height = self.tile_sample_min_height // self.spatial_compression_ratio
        tile_latent_min_width = self.tile_sample_min_width // self.spatial_compression_ratio
        tile_latent_stride_height = self.tile_sample_stride_height // self.spatial_compression_ratio
        tile_latent_stride_width = self.tile_sample_stride_width // self.spatial_compression_ratio

        blend_height = self.tile_sample_min_height - self.tile_sample_stride_height
        blend_width = self.tile_sample_min_width - self.tile_sample_stride_width

        # Split z into overlapping tiles and decode them separately.
        # The tiles have an overlap to avoid seams between tiles.
        rows = []
        for i in range(0, height, tile_latent_stride_height):
            row = []
            for j in range(0, width, tile_latent_stride_width):
                self.clear_cache()
                time = []
                for k in range(num_frames):
                    self._conv_idx = [0]
                    tile = z[:, :, k : k + 1, i : i + tile_latent_min_height, j : j + tile_latent_min_width]
                    tile = self.conv2(tile)
                    decoded = self.decoder(tile, feat_cache=self._feat_map, feat_idx=self._conv_idx)
                    time.append(decoded)
                row.append(torch.cat(time, dim=2))
            rows.append(row)
        self.clear_cache()

        result_rows = []
        for i, row in enumerate(rows):
            result_row = []
            for j, tile in enumerate(row):
                # blend the above tile and the left tile
                # to the current tile and add the current tile to the result row
                if i > 0:
                    tile = self.blend_v(rows[i - 1][j], tile, blend_height)
                if j > 0:
                    tile = self.blend_h(row[j - 1], tile, blend_width)
                result_row.append(tile[:, :, :, : self.tile_sample_stride_height, : self.tile_sample_stride_width])
            result_rows.append(torch.cat(result_row, dim=-1))

        dec = torch.cat(result_rows, dim=3)[:, :, :, :sample_height, :sample_width]

        return dec

helloyongyang's avatar
helloyongyang committed
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
    def encode(self, x, scale):
        self.clear_cache()
        ## cache
        t = x.shape[2]
        iter_ = 1 + (t - 1) // 4
        ## 对encode输入的x,按时间拆分为1、4、4、4....
        for i in range(iter_):
            self._enc_conv_idx = [0]
            if i == 0:
                out = self.encoder(
                    x[:, :, :1, :, :],
                    feat_cache=self._enc_feat_map,
                    feat_idx=self._enc_conv_idx,
                )
            else:
                out_ = self.encoder(
                    x[:, :, 1 + 4 * (i - 1) : 1 + 4 * i, :, :],
                    feat_cache=self._enc_feat_map,
                    feat_idx=self._enc_conv_idx,
                )
                out = torch.cat([out, out_], 2)
        mu, log_var = self.conv1(out).chunk(2, dim=1)
        if isinstance(scale[0], torch.Tensor):
Dongz's avatar
Dongz committed
708
            mu = (mu - scale[0].view(1, self.z_dim, 1, 1, 1)) * scale[1].view(1, self.z_dim, 1, 1, 1)
helloyongyang's avatar
helloyongyang committed
709
710
711
712
713
714
715
716
717
        else:
            mu = (mu - scale[0]) * scale[1]
        self.clear_cache()
        return mu

    def decode(self, z, scale):
        self.clear_cache()
        # z: [b,c,t,h,w]
        if isinstance(scale[0], torch.Tensor):
Dongz's avatar
Dongz committed
718
            z = z / scale[1].view(1, self.z_dim, 1, 1, 1) + scale[0].view(1, self.z_dim, 1, 1, 1)
helloyongyang's avatar
helloyongyang committed
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
        else:
            z = z / scale[1] + scale[0]
        iter_ = z.shape[2]
        x = self.conv2(z)
        for i in range(iter_):
            self._conv_idx = [0]
            if i == 0:
                out = self.decoder(
                    x[:, :, i : i + 1, :, :],
                    feat_cache=self._feat_map,
                    feat_idx=self._conv_idx,
                )
            else:
                out_ = self.decoder(
                    x[:, :, i : i + 1, :, :],
                    feat_cache=self._feat_map,
                    feat_idx=self._conv_idx,
                )
                out = torch.cat([out, out_], 2)
        self.clear_cache()
        return out

    def reparameterize(self, mu, log_var):
        std = torch.exp(0.5 * log_var)
        eps = torch.randn_like(std)
        return eps * std + mu

    def sample(self, imgs, deterministic=False):
        mu, log_var = self.encode(imgs)
        if deterministic:
            return mu
        std = torch.exp(0.5 * log_var.clamp(-30.0, 20.0))
        return mu + std * torch.randn_like(std)

    def clear_cache(self):
        self._conv_num = count_conv3d(self.decoder)
        self._conv_idx = [0]
        self._feat_map = [None] * self._conv_num
        # cache encode
        self._enc_conv_num = count_conv3d(self.encoder)
        self._enc_conv_idx = [0]
        self._enc_feat_map = [None] * self._enc_conv_num


def _video_vae(pretrained_path=None, z_dim=None, device="cpu", **kwargs):
    """
    Autoencoder3d adapted from Stable Diffusion 1.x, 2.x and XL.
    """
    # params
    cfg = dict(
        dim=96,
        z_dim=z_dim,
        dim_mult=[1, 2, 4, 4],
        num_res_blocks=2,
        attn_scales=[],
        temperal_downsample=[False, True, True],
        dropout=0.0,
    )
    cfg.update(**kwargs)

    # init model
    with torch.device("meta"):
        model = WanVAE_(**cfg)

    # load checkpoint
    logging.info(f"loading {pretrained_path}")
    model.load_state_dict(torch.load(pretrained_path, map_location=device, weights_only=True), assign=True)

    return model


class WanVAE:
791
    @peak_memory_decorator
helloyongyang's avatar
helloyongyang committed
792
793
794
795
796
797
    def __init__(
        self,
        z_dim=16,
        vae_pth="cache/vae_step_411000.pth",
        dtype=torch.float,
        device="cuda",
Xinchi Huang's avatar
Xinchi Huang committed
798
        parallel=False,
799
        use_tiling=False,
helloyongyang's avatar
helloyongyang committed
800
801
802
    ):
        self.dtype = dtype
        self.device = device
Xinchi Huang's avatar
Xinchi Huang committed
803
        self.parallel = parallel
804
        self.use_tiling = use_tiling
helloyongyang's avatar
helloyongyang committed
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842

        mean = [
            -0.7571,
            -0.7089,
            -0.9113,
            0.1075,
            -0.1745,
            0.9653,
            -0.1517,
            1.5508,
            0.4134,
            -0.0715,
            0.5517,
            -0.3632,
            -0.1922,
            -0.9497,
            0.2503,
            -0.2921,
        ]
        std = [
            2.8184,
            1.4541,
            2.3275,
            2.6558,
            1.2196,
            1.7708,
            2.6052,
            2.0743,
            3.2687,
            2.1526,
            2.8652,
            1.5579,
            1.6382,
            1.1253,
            2.8251,
            1.9160,
        ]
        self.mean = torch.tensor(mean, dtype=dtype, device=device)
TorynCurtis's avatar
TorynCurtis committed
843
844
        self.inv_std = 1.0 / torch.tensor(std, dtype=dtype, device=device)
        self.scale = [self.mean, self.inv_std]
helloyongyang's avatar
helloyongyang committed
845
846
847
848
849
850
851
852
853
854
855
856

        # init model
        self.model = (
            _video_vae(
                pretrained_path=vae_pth,
                z_dim=z_dim,
            )
            .eval()
            .requires_grad_(False)
            .to(device)
        )

TorynCurtis's avatar
TorynCurtis committed
857
858
859
860
861
862
863
864
865
866
867
868
    def to_cpu(self):
        self.model = self.model.to("cpu")
        self.mean = self.mean.cpu()
        self.inv_std = self.inv_std.cpu()
        self.scale = [self.mean, self.inv_std]

    def to_cuda(self):
        self.model = self.model.to("cuda")
        self.mean = self.mean.cuda()
        self.inv_std = self.inv_std.cuda()
        self.scale = [self.mean, self.inv_std]

gushiqiao's avatar
gushiqiao committed
869
    def encode(self, videos, args):
helloyongyang's avatar
helloyongyang committed
870
871
872
        """
        videos: A list of videos each with shape [C, T, H, W].
        """
gushiqiao's avatar
gushiqiao committed
873
874
875
        if args.cpu_offload:
            self.to_cuda()

876
877
878
879
        if self.use_tiling:
            out = [self.model.tiled_encode(u.unsqueeze(0), self.scale).float().squeeze(0) for u in videos]
        else:
            out = [self.model.encode(u.unsqueeze(0), self.scale).float().squeeze(0) for u in videos]
gushiqiao's avatar
gushiqiao committed
880
881
882
883

        if args.cpu_offload:
            self.to_cpu()
        return out
Dongz's avatar
Dongz committed
884

Xinchi Huang's avatar
Xinchi Huang committed
885
886
887
888
889
890
891
    def decode_dist(self, zs, world_size, cur_rank, split_dim):
        splited_total_len = zs.shape[split_dim]
        splited_chunk_len = splited_total_len // world_size
        padding_size = 1

        if cur_rank == 0:
            if split_dim == 2:
Dongz's avatar
Dongz committed
892
                zs = zs[:, :, : splited_chunk_len + 2 * padding_size, :].contiguous()
Xinchi Huang's avatar
Xinchi Huang committed
893
            elif split_dim == 3:
Dongz's avatar
Dongz committed
894
895
                zs = zs[:, :, :, : splited_chunk_len + 2 * padding_size].contiguous()
        elif cur_rank == world_size - 1:
Xinchi Huang's avatar
Xinchi Huang committed
896
            if split_dim == 2:
Dongz's avatar
Dongz committed
897
                zs = zs[:, :, -(splited_chunk_len + 2 * padding_size) :, :].contiguous()
Xinchi Huang's avatar
Xinchi Huang committed
898
            elif split_dim == 3:
Dongz's avatar
Dongz committed
899
                zs = zs[:, :, :, -(splited_chunk_len + 2 * padding_size) :].contiguous()
Xinchi Huang's avatar
Xinchi Huang committed
900
901
        else:
            if split_dim == 2:
Dongz's avatar
Dongz committed
902
                zs = zs[:, :, cur_rank * splited_chunk_len - padding_size : (cur_rank + 1) * splited_chunk_len + padding_size, :].contiguous()
Xinchi Huang's avatar
Xinchi Huang committed
903
            elif split_dim == 3:
Dongz's avatar
Dongz committed
904
                zs = zs[:, :, :, cur_rank * splited_chunk_len - padding_size : (cur_rank + 1) * splited_chunk_len + padding_size].contiguous()
Xinchi Huang's avatar
Xinchi Huang committed
905
906
907
908
909

        images = self.model.decode(zs.unsqueeze(0), self.scale).float().clamp_(-1, 1)

        if cur_rank == 0:
            if split_dim == 2:
Dongz's avatar
Dongz committed
910
                images = images[:, :, :, : splited_chunk_len * 8, :].contiguous()
Xinchi Huang's avatar
Xinchi Huang committed
911
            elif split_dim == 3:
Dongz's avatar
Dongz committed
912
913
                images = images[:, :, :, :, : splited_chunk_len * 8].contiguous()
        elif cur_rank == world_size - 1:
Xinchi Huang's avatar
Xinchi Huang committed
914
            if split_dim == 2:
Dongz's avatar
Dongz committed
915
                images = images[:, :, :, -splited_chunk_len * 8 :, :].contiguous()
Xinchi Huang's avatar
Xinchi Huang committed
916
            elif split_dim == 3:
Dongz's avatar
Dongz committed
917
                images = images[:, :, :, :, -splited_chunk_len * 8 :].contiguous()
Xinchi Huang's avatar
Xinchi Huang committed
918
919
        else:
            if split_dim == 2:
Dongz's avatar
Dongz committed
920
                images = images[:, :, :, 8 * padding_size : -8 * padding_size, :].contiguous()
Xinchi Huang's avatar
Xinchi Huang committed
921
            elif split_dim == 3:
Dongz's avatar
Dongz committed
922
                images = images[:, :, :, :, 8 * padding_size : -8 * padding_size].contiguous()
Xinchi Huang's avatar
Xinchi Huang committed
923
924
925
926
927
928
929
930
931

        full_images = [torch.empty_like(images) for _ in range(world_size)]
        dist.all_gather(full_images, images)

        torch.cuda.synchronize()

        images = torch.cat(full_images, dim=-1)

        return images
helloyongyang's avatar
helloyongyang committed
932

933
934
    def decode(self, zs, generator, config):
        if config.cpu_offload:
TorynCurtis's avatar
TorynCurtis committed
935
936
            self.to_cuda()

Xinchi Huang's avatar
Xinchi Huang committed
937
938
939
940
941
942
943
944
945
946
947
        if self.parallel:
            world_size = dist.get_world_size()
            cur_rank = dist.get_rank()
            height, width = zs.shape[2], zs.shape[3]
            if width % world_size == 0:
                split_dim = 3
                images = self.decode_dist(zs, world_size, cur_rank, split_dim)
            elif height % world_size == 0:
                split_dim = 2
                images = self.decode_dist(zs, world_size, cur_rank, split_dim)
            else:
root's avatar
root committed
948
                logger.info("Fall back to naive decode mode")
Xinchi Huang's avatar
Xinchi Huang committed
949
                images = self.model.decode(zs.unsqueeze(0), self.scale).float().clamp_(-1, 1)
950
951
        elif self.use_tiling:
            images = self.model.tiled_decode(zs.unsqueeze(0), self.scale).float().clamp_(-1, 1)
Xinchi Huang's avatar
Xinchi Huang committed
952
953
        else:
            images = self.model.decode(zs.unsqueeze(0), self.scale).float().clamp_(-1, 1)
TorynCurtis's avatar
TorynCurtis committed
954

955
        if config.cpu_offload:
TorynCurtis's avatar
TorynCurtis committed
956
957
958
            images = images.cpu().float()
            self.to_cpu()

Xinchi Huang's avatar
Xinchi Huang committed
959
        return images