model.py 8.73 KB
Newer Older
helloyongyang's avatar
helloyongyang committed
1
import os
2
import sys
helloyongyang's avatar
helloyongyang committed
3
4
import torch
import glob
5
import json
6
7
8
from lightx2v.models.networks.wan.weights.pre_weights import WanPreWeights
from lightx2v.models.networks.wan.weights.post_weights import WanPostWeights
from lightx2v.models.networks.wan.weights.transformer_weights import (
helloyongyang's avatar
helloyongyang committed
9
10
    WanTransformerWeights,
)
11
12
13
from lightx2v.models.networks.wan.infer.pre_infer import WanPreInfer
from lightx2v.models.networks.wan.infer.post_infer import WanPostInfer
from lightx2v.models.networks.wan.infer.transformer_infer import (
helloyongyang's avatar
helloyongyang committed
14
15
    WanTransformerInfer,
)
16
17
18
from lightx2v.models.networks.wan.infer.feature_caching.transformer_infer import (
    WanTransformerInferTeaCaching,
)
helloyongyang's avatar
helloyongyang committed
19
from safetensors import safe_open
Xinchi Huang's avatar
Xinchi Huang committed
20
21
import lightx2v.attentions.distributed.ulysses.wrap as ulysses_dist_wrap
import lightx2v.attentions.distributed.ring.wrap as ring_dist_wrap
22
from lightx2v.utils.envs import *
23
from lightx2v.utils.memory_profiler import peak_memory_decorator
24
from loguru import logger
helloyongyang's avatar
helloyongyang committed
25
26
27
28
29
30
31


class WanModel:
    pre_weight_class = WanPreWeights
    post_weight_class = WanPostWeights
    transformer_weight_class = WanTransformerWeights

32
    @peak_memory_decorator
gushiqiao's avatar
gushiqiao committed
33
    def __init__(self, model_path, config, device):
helloyongyang's avatar
helloyongyang committed
34
35
        self.model_path = model_path
        self.config = config
gushiqiao's avatar
gushiqiao committed
36
        self.device = device
helloyongyang's avatar
helloyongyang committed
37
38
        self._init_infer_class()
        self._init_weights()
39
        if GET_RUNNING_FLAG() == "save_naive_quant":
40
41
            assert self.config.get("quant_model_path") is not None, "quant_model_path is None"
            self.save_weights(self.config.quant_model_path)
42
43
            sys.exit(0)

helloyongyang's avatar
helloyongyang committed
44
        self._init_infer()
lijiaqi2's avatar
lijiaqi2 committed
45
        self.current_lora = None
helloyongyang's avatar
helloyongyang committed
46

Xinchi Huang's avatar
Xinchi Huang committed
47
48
49
50
51
52
53
        if config["parallel_attn_type"]:
            if config["parallel_attn_type"] == "ulysses":
                ulysses_dist_wrap.parallelize_wan(self)
            elif config["parallel_attn_type"] == "ring":
                ring_dist_wrap.parallelize_wan(self)
            else:
                raise Exception(f"Unsuppotred parallel_attn_type")
Xinchi Huang's avatar
Xinchi Huang committed
54

helloyongyang's avatar
helloyongyang committed
55
56
57
58
59
60
    def _init_infer_class(self):
        self.pre_infer_class = WanPreInfer
        self.post_infer_class = WanPostInfer
        if self.config["feature_caching"] == "NoCaching":
            self.transformer_infer_class = WanTransformerInfer
        elif self.config["feature_caching"] == "Tea":
61
            self.transformer_infer_class = WanTransformerInferTeaCaching
helloyongyang's avatar
helloyongyang committed
62
        else:
Dongz's avatar
Dongz committed
63
            raise NotImplementedError(f"Unsupported feature_caching type: {self.config['feature_caching']}")
helloyongyang's avatar
helloyongyang committed
64
65

    def _load_safetensor_to_dict(self, file_path):
lijiaqi2's avatar
lijiaqi2 committed
66
        use_bfloat16 = self.config.get("use_bfloat16", True)
helloyongyang's avatar
helloyongyang committed
67
        with safe_open(file_path, framework="pt") as f:
lijiaqi2's avatar
lijiaqi2 committed
68
69
70
71
            if use_bfloat16:
                tensor_dict = {key: f.get_tensor(key).to(torch.bfloat16).to(self.device) for key in f.keys()}
            else:
                tensor_dict = {key: f.get_tensor(key).to(self.device) for key in f.keys()}
helloyongyang's avatar
helloyongyang committed
72
73
74
75
76
77
78
        return tensor_dict

    def _load_ckpt(self):
        safetensors_pattern = os.path.join(self.model_path, "*.safetensors")
        safetensors_files = glob.glob(safetensors_pattern)

        if not safetensors_files:
Dongz's avatar
Dongz committed
79
            raise FileNotFoundError(f"No .safetensors files found in directory: {self.model_path}")
helloyongyang's avatar
helloyongyang committed
80
81
82
83
84
85
        weight_dict = {}
        for file_path in safetensors_files:
            file_weights = self._load_safetensor_to_dict(file_path)
            weight_dict.update(file_weights)
        return weight_dict

86
    def _load_quant_ckpt(self):
87
88
        assert self.config.get("quant_model_path") is not None, "quant_model_path is None"
        ckpt_path = self.config.quant_model_path
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
        logger.info(f"Loading quant model from {ckpt_path}")

        quant_pth_file = os.path.join(ckpt_path, "quant_weights.pth")

        if os.path.exists(quant_pth_file):
            logger.info("Found quant_weights.pth, loading as PyTorch model.")
            weight_dict = torch.load(quant_pth_file, map_location=self.device, weights_only=True)
        else:
            index_files = [f for f in os.listdir(ckpt_path) if f.endswith(".index.json")]
            if not index_files:
                raise FileNotFoundError(f"No quant_weights.pth or *.index.json found in {ckpt_path}")

            index_path = os.path.join(ckpt_path, index_files[0])
            logger.info(f"quant_weights.pth not found. Using safetensors index: {index_path}")

            with open(index_path, "r") as f:
                index_data = json.load(f)

            weight_dict = {}
            for filename in set(index_data["weight_map"].values()):
                safetensor_path = os.path.join(ckpt_path, filename)
110
111
112
113
114
115
                with safe_open(safetensor_path, framework="pt", device=str(self.device)) as f:
                    logger.info(f"Loading weights from {safetensor_path}")
                    for k in f.keys():
                        weight_dict[k] = f.get_tensor(k)
                        if weight_dict[k].dtype == torch.float:
                            weight_dict[k] = weight_dict[k].to(torch.bfloat16)
116

117
118
        return weight_dict

lijiaqi2's avatar
lijiaqi2 committed
119
120
    def _init_weights(self, weight_dict=None):
        if weight_dict is None:
121
            if GET_RUNNING_FLAG() == "save_naive_quant" or self.config["mm_config"].get("weight_auto_quant", False) or self.config["mm_config"].get("mm_type", "Default") == "Default":
122
123
                self.original_weight_dict = self._load_ckpt()
            else:
124
                self.original_weight_dict = self._load_quant_ckpt()
lijiaqi2's avatar
lijiaqi2 committed
125
126
        else:
            self.original_weight_dict = weight_dict
helloyongyang's avatar
helloyongyang committed
127
128
        # init weights
        self.pre_weight = self.pre_weight_class(self.config)
TorynCurtis's avatar
TorynCurtis committed
129
        self.post_weight = self.post_weight_class(self.config)
helloyongyang's avatar
helloyongyang committed
130
131
        self.transformer_weights = self.transformer_weight_class(self.config)
        # load weights
132
133
134
        self.pre_weight.load(self.original_weight_dict)
        self.post_weight.load(self.original_weight_dict)
        self.transformer_weights.load(self.original_weight_dict)
helloyongyang's avatar
helloyongyang committed
135
136
137
138
139
140

    def _init_infer(self):
        self.pre_infer = self.pre_infer_class(self.config)
        self.post_infer = self.post_infer_class(self.config)
        self.transformer_infer = self.transformer_infer_class(self.config)

141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
    def save_weights(self, save_path):
        if not os.path.exists(save_path):
            os.makedirs(save_path)

        pre_state_dict = self.pre_weight.state_dict()
        logger.info(pre_state_dict.keys())

        post_state_dict = self.post_weight.state_dict()
        logger.info(post_state_dict.keys())

        transformer_state_dict = self.transformer_weights.state_dict()
        logger.info(transformer_state_dict.keys())

        save_dict = {}
        save_dict.update(pre_state_dict)
        save_dict.update(post_state_dict)
        save_dict.update(transformer_state_dict)

        save_path = os.path.join(save_path, "quant_weights.pth")
        torch.save(save_dict, save_path)
        logger.info(f"Save weights to {save_path}")

helloyongyang's avatar
helloyongyang committed
163
164
    def set_scheduler(self, scheduler):
        self.scheduler = scheduler
165
166
        self.pre_infer.set_scheduler(scheduler)
        self.post_infer.set_scheduler(scheduler)
helloyongyang's avatar
helloyongyang committed
167
168
        self.transformer_infer.set_scheduler(scheduler)

TorynCurtis's avatar
TorynCurtis committed
169
170
171
172
173
174
175
176
177
178
    def to_cpu(self):
        self.pre_weight.to_cpu()
        self.post_weight.to_cpu()
        self.transformer_weights.to_cpu()

    def to_cuda(self):
        self.pre_weight.to_cuda()
        self.post_weight.to_cuda()
        self.transformer_weights.to_cuda()

helloyongyang's avatar
helloyongyang committed
179
    @torch.no_grad()
180
    def infer(self, inputs):
gushiqiao's avatar
gushiqiao committed
181
182
183
184
        if self.config["cpu_offload"]:
            self.pre_weight.to_cuda()
            self.post_weight.to_cuda()

185
        embed, grid_sizes, pre_infer_out = self.pre_infer.infer(self.pre_weight, inputs, positive=True)
186
        x = self.transformer_infer.infer(self.transformer_weights, grid_sizes, *pre_infer_out)
Dongz's avatar
Dongz committed
187
        noise_pred_cond = self.post_infer.infer(self.post_weight, x, embed, grid_sizes)[0]
helloyongyang's avatar
helloyongyang committed
188
189
190
191
192

        if self.config["feature_caching"] == "Tea":
            self.scheduler.cnt += 1
            if self.scheduler.cnt >= self.scheduler.num_steps:
                self.scheduler.cnt = 0
root's avatar
root committed
193
        self.scheduler.noise_pred = noise_pred_cond
helloyongyang's avatar
helloyongyang committed
194

195
        if self.config["enable_cfg"]:
root's avatar
root committed
196
            embed, grid_sizes, pre_infer_out = self.pre_infer.infer(self.pre_weight, inputs, positive=False)
197
            x = self.transformer_infer.infer(self.transformer_weights, grid_sizes, *pre_infer_out)
root's avatar
root committed
198
            noise_pred_uncond = self.post_infer.infer(self.post_weight, x, embed, grid_sizes)[0]
helloyongyang's avatar
helloyongyang committed
199

root's avatar
root committed
200
201
202
203
            if self.config["feature_caching"] == "Tea":
                self.scheduler.cnt += 1
                if self.scheduler.cnt >= self.scheduler.num_steps:
                    self.scheduler.cnt = 0
helloyongyang's avatar
helloyongyang committed
204

root's avatar
root committed
205
            self.scheduler.noise_pred = noise_pred_uncond + self.config.sample_guide_scale * (noise_pred_cond - noise_pred_uncond)
gushiqiao's avatar
gushiqiao committed
206

root's avatar
root committed
207
208
209
            if self.config["cpu_offload"]:
                self.pre_weight.to_cpu()
                self.post_weight.to_cpu()