model.py 19 KB
Newer Older
helloyongyang's avatar
helloyongyang committed
1
2
3
4
5
6
7
8
9
10
# Modified from transformers.models.t5.modeling_t5
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
import logging
import math
import os
import torch
import torch.nn as nn
import torch.nn.functional as F

from .tokenizer import HuggingfaceTokenizer
root's avatar
root committed
11
from loguru import logger
12
from lightx2v.models.input_encoders.hf.q_linear import QuantLinearInt8, QuantLinearFp8
13

helloyongyang's avatar
helloyongyang committed
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

__all__ = [
    "T5Model",
    "T5Encoder",
    "T5Decoder",
    "T5EncoderModel",
]


def fp16_clamp(x):
    if x.dtype == torch.float16 and torch.isinf(x).any():
        clamp = torch.finfo(x.dtype).max - 1000
        x = torch.clamp(x, min=-clamp, max=clamp)
    return x


def init_weights(m):
    if isinstance(m, T5LayerNorm):
        nn.init.ones_(m.weight)
    elif isinstance(m, T5Model):
        nn.init.normal_(m.token_embedding.weight, std=1.0)
    elif isinstance(m, T5FeedForward):
        nn.init.normal_(m.gate[0].weight, std=m.dim**-0.5)
        nn.init.normal_(m.fc1.weight, std=m.dim**-0.5)
        nn.init.normal_(m.fc2.weight, std=m.dim_ffn**-0.5)
    elif isinstance(m, T5Attention):
        nn.init.normal_(m.q.weight, std=(m.dim * m.dim_attn) ** -0.5)
        nn.init.normal_(m.k.weight, std=m.dim**-0.5)
        nn.init.normal_(m.v.weight, std=m.dim**-0.5)
        nn.init.normal_(m.o.weight, std=(m.num_heads * m.dim_attn) ** -0.5)
    elif isinstance(m, T5RelativeEmbedding):
Dongz's avatar
Dongz committed
45
        nn.init.normal_(m.embedding.weight, std=(2 * m.num_buckets * m.num_heads) ** -0.5)
helloyongyang's avatar
helloyongyang committed
46
47
48
49


class GELU(nn.Module):
    def forward(self, x):
Dongz's avatar
Dongz committed
50
        return 0.5 * x * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi) * (x + 0.044715 * torch.pow(x, 3.0))))
helloyongyang's avatar
helloyongyang committed
51
52
53


class T5LayerNorm(nn.Module):
gushiqiao's avatar
gushiqiao committed
54
    def __init__(self, dim, eps=1e-6, dtype=torch.float16):
helloyongyang's avatar
helloyongyang committed
55
56
57
        super(T5LayerNorm, self).__init__()
        self.dim = dim
        self.eps = eps
gushiqiao's avatar
gushiqiao committed
58
        self.weight = nn.Parameter(torch.ones(dim, dtype=dtype))
helloyongyang's avatar
helloyongyang committed
59
60
61
62
63
64
65
66
67

    def forward(self, x):
        x = x * torch.rsqrt(x.float().pow(2).mean(dim=-1, keepdim=True) + self.eps)
        if self.weight.dtype in [torch.float16, torch.bfloat16]:
            x = x.type_as(self.weight)
        return self.weight * x


class T5Attention(nn.Module):
gushiqiao's avatar
gushiqiao committed
68
    def __init__(self, dim, dim_attn, num_heads, dropout=0.1, quantized=False, quant_scheme=None, dtype=torch.bfloat16):
helloyongyang's avatar
helloyongyang committed
69
70
71
72
73
74
75
        assert dim_attn % num_heads == 0
        super(T5Attention, self).__init__()
        self.dim = dim
        self.dim_attn = dim_attn
        self.num_heads = num_heads
        self.head_dim = dim_attn // num_heads

76
77
78
        if quantized:
            if quant_scheme == "int8":
                linear_cls = QuantLinearInt8
79
80
            elif quant_scheme == "fp8":
                linear_cls = QuantLinearFp8
81
82
83
        else:
            linear_cls = nn.Linear

helloyongyang's avatar
helloyongyang committed
84
        # layers
gushiqiao's avatar
gushiqiao committed
85
86
87
88
        self.q = linear_cls(dim, dim_attn, bias=False, dtype=dtype)
        self.k = linear_cls(dim, dim_attn, bias=False, dtype=dtype)
        self.v = linear_cls(dim, dim_attn, bias=False, dtype=dtype)
        self.o = linear_cls(dim_attn, dim, bias=False, dtype=dtype)
helloyongyang's avatar
helloyongyang committed
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
        self.dropout = nn.Dropout(dropout)

    def forward(self, x, context=None, mask=None, pos_bias=None):
        """
        x:          [B, L1, C].
        context:    [B, L2, C] or None.
        mask:       [B, L2] or [B, L1, L2] or None.
        """
        # check inputs
        context = x if context is None else context
        b, n, c = x.size(0), self.num_heads, self.head_dim

        # compute query, key, value
        q = self.q(x).view(b, -1, n, c)
        k = self.k(context).view(b, -1, n, c)
        v = self.v(context).view(b, -1, n, c)

        # attention bias
        attn_bias = x.new_zeros(b, n, q.size(1), k.size(1))
        if pos_bias is not None:
            attn_bias += pos_bias
        if mask is not None:
            assert mask.ndim in [2, 3]
            mask = mask.view(b, 1, 1, -1) if mask.ndim == 2 else mask.unsqueeze(1)
            attn_bias.masked_fill_(mask == 0, torch.finfo(x.dtype).min)

        # compute attention (T5 does not use scaling)
        attn = torch.einsum("binc,bjnc->bnij", q, k) + attn_bias
117
        attn = F.softmax(attn.float(), dim=-1).to(torch.bfloat16)
helloyongyang's avatar
helloyongyang committed
118
119
120
121
122
123
124
125
126
127
        x = torch.einsum("bnij,bjnc->binc", attn, v)

        # output
        x = x.reshape(b, -1, n * c)
        x = self.o(x)
        x = self.dropout(x)
        return x


class T5FeedForward(nn.Module):
gushiqiao's avatar
gushiqiao committed
128
    def __init__(self, dim, dim_ffn, dropout=0.1, quantized=False, quant_scheme=None, dtype=torch.bfloat16):
helloyongyang's avatar
helloyongyang committed
129
130
131
132
        super(T5FeedForward, self).__init__()
        self.dim = dim
        self.dim_ffn = dim_ffn

133
134
135
        if quantized:
            if quant_scheme == "int8":
                linear_cls = QuantLinearInt8
136
137
            elif quant_scheme == "fp8":
                linear_cls = QuantLinearFp8
138
139
        else:
            linear_cls = nn.Linear
helloyongyang's avatar
helloyongyang committed
140
        # layers
gushiqiao's avatar
gushiqiao committed
141
142
143
        self.gate = nn.Sequential(linear_cls(dim, dim_ffn, bias=False, dtype=dtype), GELU())
        self.fc1 = linear_cls(dim, dim_ffn, bias=False, dtype=dtype)
        self.fc2 = linear_cls(dim_ffn, dim, bias=False, dtype=dtype)
helloyongyang's avatar
helloyongyang committed
144
145
146
147
148
149
150
151
152
153
154
        self.dropout = nn.Dropout(dropout)

    def forward(self, x):
        x = self.fc1(x) * self.gate(x)
        x = self.dropout(x)
        x = self.fc2(x)
        x = self.dropout(x)
        return x


class T5SelfAttention(nn.Module):
gushiqiao's avatar
gushiqiao committed
155
    def __init__(self, dim, dim_attn, dim_ffn, num_heads, num_buckets, shared_pos=True, dropout=0.1, quantized=False, quant_scheme=None, dtype=torch.bfloat16):
helloyongyang's avatar
helloyongyang committed
156
157
158
159
160
161
162
163
164
        super(T5SelfAttention, self).__init__()
        self.dim = dim
        self.dim_attn = dim_attn
        self.dim_ffn = dim_ffn
        self.num_heads = num_heads
        self.num_buckets = num_buckets
        self.shared_pos = shared_pos

        # layers
gushiqiao's avatar
gushiqiao committed
165
166
167
168
169
        self.norm1 = T5LayerNorm(dim, dtype=dtype)
        self.attn = T5Attention(dim, dim_attn, num_heads, dropout, quantized, quant_scheme, dtype)
        self.norm2 = T5LayerNorm(dim, dtype=dtype)
        self.ffn = T5FeedForward(dim, dim_ffn, dropout, quantized, quant_scheme, dtype=dtype)
        self.pos_embedding = None if shared_pos else T5RelativeEmbedding(num_buckets, num_heads, bidirectional=True, dtype=dtype)
helloyongyang's avatar
helloyongyang committed
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203

    def forward(self, x, mask=None, pos_bias=None):
        e = pos_bias if self.shared_pos else self.pos_embedding(x.size(1), x.size(1))
        x = fp16_clamp(x + self.attn(self.norm1(x), mask=mask, pos_bias=e))
        x = fp16_clamp(x + self.ffn(self.norm2(x)))
        return x


class T5CrossAttention(nn.Module):
    def __init__(
        self,
        dim,
        dim_attn,
        dim_ffn,
        num_heads,
        num_buckets,
        shared_pos=True,
        dropout=0.1,
    ):
        super(T5CrossAttention, self).__init__()
        self.dim = dim
        self.dim_attn = dim_attn
        self.dim_ffn = dim_ffn
        self.num_heads = num_heads
        self.num_buckets = num_buckets
        self.shared_pos = shared_pos

        # layers
        self.norm1 = T5LayerNorm(dim)
        self.self_attn = T5Attention(dim, dim_attn, num_heads, dropout)
        self.norm2 = T5LayerNorm(dim)
        self.cross_attn = T5Attention(dim, dim_attn, num_heads, dropout)
        self.norm3 = T5LayerNorm(dim)
        self.ffn = T5FeedForward(dim, dim_ffn, dropout)
Dongz's avatar
Dongz committed
204
        self.pos_embedding = None if shared_pos else T5RelativeEmbedding(num_buckets, num_heads, bidirectional=False)
helloyongyang's avatar
helloyongyang committed
205

Dongz's avatar
Dongz committed
206
    def forward(self, x, mask=None, encoder_states=None, encoder_mask=None, pos_bias=None):
helloyongyang's avatar
helloyongyang committed
207
208
        e = pos_bias if self.shared_pos else self.pos_embedding(x.size(1), x.size(1))
        x = fp16_clamp(x + self.self_attn(self.norm1(x), mask=mask, pos_bias=e))
Dongz's avatar
Dongz committed
209
        x = fp16_clamp(x + self.cross_attn(self.norm2(x), context=encoder_states, mask=encoder_mask))
helloyongyang's avatar
helloyongyang committed
210
211
212
213
214
        x = fp16_clamp(x + self.ffn(self.norm3(x)))
        return x


class T5RelativeEmbedding(nn.Module):
gushiqiao's avatar
gushiqiao committed
215
    def __init__(self, num_buckets, num_heads, bidirectional, dtype=torch.bfloat16, max_dist=128):
helloyongyang's avatar
helloyongyang committed
216
217
218
219
220
221
222
        super(T5RelativeEmbedding, self).__init__()
        self.num_buckets = num_buckets
        self.num_heads = num_heads
        self.bidirectional = bidirectional
        self.max_dist = max_dist

        # layers
gushiqiao's avatar
gushiqiao committed
223
        self.embedding = nn.Embedding(num_buckets, num_heads, dtype=dtype)
helloyongyang's avatar
helloyongyang committed
224
225
226
227
228

    def forward(self, lq, lk):
        device = self.embedding.weight.device
        # rel_pos = torch.arange(lk).unsqueeze(0).to(device) - \
        #     torch.arange(lq).unsqueeze(1).to(device)
Dongz's avatar
Dongz committed
229
        rel_pos = torch.arange(lk, device=device).unsqueeze(0) - torch.arange(lq, device=device).unsqueeze(1)
helloyongyang's avatar
helloyongyang committed
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
        rel_pos = self._relative_position_bucket(rel_pos)
        rel_pos_embeds = self.embedding(rel_pos)
        rel_pos_embeds = rel_pos_embeds.permute(2, 0, 1).unsqueeze(0)  # [1, N, Lq, Lk]
        return rel_pos_embeds.contiguous()

    def _relative_position_bucket(self, rel_pos):
        # preprocess
        if self.bidirectional:
            num_buckets = self.num_buckets // 2
            rel_buckets = (rel_pos > 0).long() * num_buckets
            rel_pos = torch.abs(rel_pos)
        else:
            num_buckets = self.num_buckets
            rel_buckets = 0
            rel_pos = -torch.min(rel_pos, torch.zeros_like(rel_pos))

        # embeddings for small and large positions
        max_exact = num_buckets // 2
Dongz's avatar
Dongz committed
248
249
        rel_pos_large = max_exact + (torch.log(rel_pos.float() / max_exact) / math.log(self.max_dist / max_exact) * (num_buckets - max_exact)).long()
        rel_pos_large = torch.min(rel_pos_large, torch.full_like(rel_pos_large, num_buckets - 1))
helloyongyang's avatar
helloyongyang committed
250
251
252
253
254
        rel_buckets += torch.where(rel_pos < max_exact, rel_pos, rel_pos_large)
        return rel_buckets


class T5Encoder(nn.Module):
gushiqiao's avatar
gushiqiao committed
255
    def __init__(self, dtype, vocab, dim, dim_attn, dim_ffn, num_heads, num_layers, num_buckets, shared_pos=True, dropout=0.1, cpu_offload=False, quantized=False, quant_scheme=None):
helloyongyang's avatar
helloyongyang committed
256
        super(T5Encoder, self).__init__()
257

258
        self.cpu_offload = cpu_offload
helloyongyang's avatar
helloyongyang committed
259
260
261
262
263
264
265
        self.dim = dim
        self.dim_attn = dim_attn
        self.dim_ffn = dim_ffn
        self.num_heads = num_heads
        self.num_layers = num_layers
        self.num_buckets = num_buckets
        self.shared_pos = shared_pos
266
        self.quant_scheme = quant_scheme
helloyongyang's avatar
helloyongyang committed
267
268

        # layers
gushiqiao's avatar
gushiqiao committed
269
270
        self.token_embedding = vocab.to(dtype) if isinstance(vocab, nn.Embedding) else nn.Embedding(vocab, dim, dtype=dtype)
        self.pos_embedding = T5RelativeEmbedding(num_buckets, num_heads, bidirectional=True, dtype=dtype) if shared_pos else None
helloyongyang's avatar
helloyongyang committed
271
        self.dropout = nn.Dropout(dropout)
gushiqiao's avatar
gushiqiao committed
272
273
        self.blocks = nn.ModuleList([T5SelfAttention(dim, dim_attn, dim_ffn, num_heads, num_buckets, shared_pos, dropout, quantized, quant_scheme, dtype) for _ in range(num_layers)])
        self.norm = T5LayerNorm(dim, dtype=dtype)
helloyongyang's avatar
helloyongyang committed
274
275

        # initialize weights
276
        # self.apply(init_weights)
helloyongyang's avatar
helloyongyang committed
277
278

    def forward(self, ids, mask=None):
279
280
        if self.cpu_offload:
            self.token_embedding = self.token_embedding.cuda()
helloyongyang's avatar
helloyongyang committed
281
        x = self.token_embedding(ids)
282
283
        if self.cpu_offload:
            self.token_embedding = self.token_embedding.cpu()
helloyongyang's avatar
helloyongyang committed
284
        x = self.dropout(x)
285
286
        if self.cpu_offload and self.pos_embedding is not None:
            self.pos_embedding = self.pos_embedding.cuda()
helloyongyang's avatar
helloyongyang committed
287
        e = self.pos_embedding(x.size(1), x.size(1)) if self.shared_pos else None
288
289
        if self.cpu_offload and self.pos_embedding is not None:
            self.pos_embedding = self.pos_embedding.cpu()
helloyongyang's avatar
helloyongyang committed
290
        for block in self.blocks:
291
292
            if self.cpu_offload:
                block = block.cuda()
helloyongyang's avatar
helloyongyang committed
293
            x = block(x, mask, pos_bias=e)
294
295
296
297
            if self.cpu_offload:
                block = block.cpu()
        if self.cpu_offload:
            self.norm = self.norm.cuda()
helloyongyang's avatar
helloyongyang committed
298
        x = self.norm(x)
299
300
        if self.cpu_offload:
            self.norm = self.norm.cpu()
helloyongyang's avatar
helloyongyang committed
301
        x = self.dropout(x)
302
        return x.to(torch.bfloat16)
helloyongyang's avatar
helloyongyang committed
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327


class T5Decoder(nn.Module):
    def __init__(
        self,
        vocab,
        dim,
        dim_attn,
        dim_ffn,
        num_heads,
        num_layers,
        num_buckets,
        shared_pos=True,
        dropout=0.1,
    ):
        super(T5Decoder, self).__init__()
        self.dim = dim
        self.dim_attn = dim_attn
        self.dim_ffn = dim_ffn
        self.num_heads = num_heads
        self.num_layers = num_layers
        self.num_buckets = num_buckets
        self.shared_pos = shared_pos

        # layers
Dongz's avatar
Dongz committed
328
329
        self.token_embedding = vocab if isinstance(vocab, nn.Embedding) else nn.Embedding(vocab, dim)
        self.pos_embedding = T5RelativeEmbedding(num_buckets, num_heads, bidirectional=False) if shared_pos else None
helloyongyang's avatar
helloyongyang committed
330
        self.dropout = nn.Dropout(dropout)
Dongz's avatar
Dongz committed
331
        self.blocks = nn.ModuleList([T5CrossAttention(dim, dim_attn, dim_ffn, num_heads, num_buckets, shared_pos, dropout) for _ in range(num_layers)])
helloyongyang's avatar
helloyongyang committed
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
        self.norm = T5LayerNorm(dim)

        # initialize weights
        self.apply(init_weights)

    def forward(self, ids, mask=None, encoder_states=None, encoder_mask=None):
        b, s = ids.size()

        # causal mask
        if mask is None:
            mask = torch.tril(torch.ones(1, s, s).to(ids.device))
        elif mask.ndim == 2:
            mask = torch.tril(mask.unsqueeze(1).expand(-1, s, -1))

        # layers
        x = self.token_embedding(ids)
        x = self.dropout(x)
        e = self.pos_embedding(x.size(1), x.size(1)) if self.shared_pos else None
        for block in self.blocks:
            x = block(x, mask, encoder_states, encoder_mask, pos_bias=e)
        x = self.norm(x)
        x = self.dropout(x)
        return x


class T5Model(nn.Module):
    def __init__(
        self,
        vocab_size,
        dim,
        dim_attn,
        dim_ffn,
        num_heads,
        encoder_layers,
        decoder_layers,
        num_buckets,
        shared_pos=True,
        dropout=0.1,
    ):
        super(T5Model, self).__init__()
        self.vocab_size = vocab_size
        self.dim = dim
        self.dim_attn = dim_attn
        self.dim_ffn = dim_ffn
        self.num_heads = num_heads
        self.encoder_layers = encoder_layers
        self.decoder_layers = decoder_layers
        self.num_buckets = num_buckets

        # layers
        self.token_embedding = nn.Embedding(vocab_size, dim)
        self.encoder = T5Encoder(
            self.token_embedding,
            dim,
            dim_attn,
            dim_ffn,
            num_heads,
            encoder_layers,
            num_buckets,
            shared_pos,
            dropout,
        )
        self.decoder = T5Decoder(
            self.token_embedding,
            dim,
            dim_attn,
            dim_ffn,
            num_heads,
            decoder_layers,
            num_buckets,
            shared_pos,
            dropout,
        )
        self.head = nn.Linear(dim, vocab_size, bias=False)

        # initialize weights
        self.apply(init_weights)

    def forward(self, encoder_ids, encoder_mask, decoder_ids, decoder_mask):
        x = self.encoder(encoder_ids, encoder_mask)
        x = self.decoder(decoder_ids, decoder_mask, x, encoder_mask)
        x = self.head(x)
        return x


def _t5(
    name,
    encoder_only=False,
    decoder_only=False,
    return_tokenizer=False,
    tokenizer_kwargs={},
    dtype=torch.float32,
    device="cpu",
    **kwargs,
):
    # sanity check
    assert not (encoder_only and decoder_only)

    # params
    if encoder_only:
        model_cls = T5Encoder
        kwargs["vocab"] = kwargs.pop("vocab_size")
        kwargs["num_layers"] = kwargs.pop("encoder_layers")
        _ = kwargs.pop("decoder_layers")
    elif decoder_only:
        model_cls = T5Decoder
        kwargs["vocab"] = kwargs.pop("vocab_size")
        kwargs["num_layers"] = kwargs.pop("decoder_layers")
        _ = kwargs.pop("encoder_layers")
    else:
        model_cls = T5Model

    # init model
    with torch.device(device):
gushiqiao's avatar
gushiqiao committed
446
        model = model_cls(dtype=dtype, **kwargs)
helloyongyang's avatar
helloyongyang committed
447
448

    # set device
gushiqiao's avatar
gushiqiao committed
449
    model = model.to(device=device)
450
    return model
helloyongyang's avatar
helloyongyang committed
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478


def umt5_xxl(**kwargs):
    cfg = dict(
        vocab_size=256384,
        dim=4096,
        dim_attn=4096,
        dim_ffn=10240,
        num_heads=64,
        encoder_layers=24,
        decoder_layers=24,
        num_buckets=32,
        shared_pos=False,
        dropout=0.1,
    )
    cfg.update(**kwargs)
    return _t5("umt5-xxl", **cfg)


class T5EncoderModel:
    def __init__(
        self,
        text_len,
        dtype=torch.bfloat16,
        device=torch.cuda.current_device(),
        checkpoint_path=None,
        tokenizer_path=None,
        shard_fn=None,
479
480
        cpu_offload=False,
        offload_granularity="model",
481
482
483
        t5_quantized=False,
        t5_quantized_ckpt=None,
        quant_scheme=None,
helloyongyang's avatar
helloyongyang committed
484
485
486
487
    ):
        self.text_len = text_len
        self.dtype = dtype
        self.device = device
488
489
490
491
        if t5_quantized_ckpt is not None and t5_quantized:
            self.checkpoint_path = t5_quantized_ckpt
        else:
            self.checkpoint_path = checkpoint_path
helloyongyang's avatar
helloyongyang committed
492
        self.tokenizer_path = tokenizer_path
493
494
495
496
497
498
        self.offload_granularity = offload_granularity

        # sync cpu offload
        self.cpu_offload = cpu_offload
        if self.cpu_offload:
            assert self.offload_granularity in ["block", "model"]
helloyongyang's avatar
helloyongyang committed
499

500
501
502
503
504
505
        model = (
            umt5_xxl(
                encoder_only=True,
                return_tokenizer=False,
                dtype=dtype,
                device=device,
506
507
508
                cpu_offload=(cpu_offload if self.offload_granularity == "block" else False),
                quantized=t5_quantized,
                quant_scheme=quant_scheme,
509
510
511
512
            )
            .eval()
            .requires_grad_(False)
        )
513

gushiqiao's avatar
gushiqiao committed
514
        logger.info(f"Start Loading weights from {self.checkpoint_path}")
515
        model.load_state_dict(torch.load(self.checkpoint_path, map_location="cpu", weights_only=True))
gushiqiao's avatar
gushiqiao committed
516
517
        logger.info(f"End Loading weights from {self.checkpoint_path}")

helloyongyang's avatar
helloyongyang committed
518
519
520
521
522
523
        self.model = model
        if shard_fn is not None:
            self.model = shard_fn(self.model, sync_module_states=False)
        else:
            self.model.to(self.device)
        # init tokenizer
Dongz's avatar
Dongz committed
524
        self.tokenizer = HuggingfaceTokenizer(name=tokenizer_path, seq_len=text_len, clean="whitespace")
helloyongyang's avatar
helloyongyang committed
525

TorynCurtis's avatar
TorynCurtis committed
526
527
528
529
530
531
    def to_cpu(self):
        self.model = self.model.to("cpu")

    def to_cuda(self):
        self.model = self.model.to("cuda")

532
533
    def infer(self, texts):
        if self.cpu_offload and self.offload_granularity == "model":
TorynCurtis's avatar
TorynCurtis committed
534
535
            self.to_cuda()

helloyongyang's avatar
helloyongyang committed
536
537
538
539
540
        ids, mask = self.tokenizer(texts, return_mask=True, add_special_tokens=True)
        ids = ids.cuda()
        mask = mask.cuda()
        seq_lens = mask.gt(0).sum(dim=1).long()
        context = self.model(ids, mask)
TorynCurtis's avatar
TorynCurtis committed
541

542
        if self.cpu_offload and self.offload_granularity == "model":
TorynCurtis's avatar
TorynCurtis committed
543
544
            self.to_cpu()

helloyongyang's avatar
helloyongyang committed
545
546
547
548
        return [u[:v] for u, v in zip(context, seq_lens)]


if __name__ == "__main__":
549
    checkpoint_dir = ""
helloyongyang's avatar
helloyongyang committed
550
551
552
553
554
555
556
557
558
559
560
561
    t5_checkpoint = "models_t5_umt5-xxl-enc-bf16.pth"
    t5_tokenizer = "google/umt5-xxl"
    model = T5EncoderModel(
        text_len=512,
        dtype=torch.bfloat16,
        device=torch.device("cuda"),
        checkpoint_path=os.path.join(checkpoint_dir, t5_checkpoint),
        tokenizer_path=os.path.join(checkpoint_dir, t5_tokenizer),
        shard_fn=None,
    )
    text = "Two anthropomorphic cats in comfy boxing gear and bright gloves fight intensely on a spotlighted stage."
    outputs = model.infer(text)
root's avatar
root committed
562
    logger.info(outputs)