test_bench3_bias.py 2.85 KB
Newer Older
Xtra's avatar
Xtra committed
1
2
import torch
import time
3
from test_bench import MMWeightMxfp6ActMxfp8
Xtra's avatar
Xtra committed
4
5
6
7
8
9
10
11


def test_speed(m, k, n):
    with torch.no_grad():
        input_tensor = torch.randn(m, k, dtype=torch.bfloat16).cuda()
        weight = torch.randn(n, k, dtype=torch.bfloat16, device="cuda")
        bias = torch.randn(1, n, dtype=torch.bfloat16).cuda()

12
        mm = MMWeightMxfp6ActMxfp8(weight, bias)
Xtra's avatar
Xtra committed
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

        # warmup
        output_tensor = mm.apply(input_tensor)

        torch.cuda.synchronize()
        start_time = time.time()
        for i in range(100):
            output_tensor = mm.apply(input_tensor)
        torch.cuda.synchronize()
        end_time = time.time()

        lightx2v_kernel_time = (end_time - start_time) / 100
        print(f"lightx2v-kernel time: {lightx2v_kernel_time}")

        input_tensor = torch.randn(m, n, dtype=torch.bfloat16).cuda()
        weight = torch.randn(k, n, dtype=torch.bfloat16, device="cuda")
        bias = torch.randn(1, k, dtype=torch.bfloat16).cuda()

        linear = torch.nn.Linear(k, n, bias=True).cuda()
        linear.weight.data = weight
        linear.bias.data = bias

        # warmup
        ref_output_tensor = linear(input_tensor)

        torch.cuda.synchronize()
        start_time = time.time()
        for i in range(100):
            ref_output_tensor = linear(input_tensor)
        torch.cuda.synchronize()
        end_time = time.time()

        ref_time = (end_time - start_time) / 100
        print(f"ref time: {ref_time}")

        print(f"speedup: {ref_time / lightx2v_kernel_time:.3f}")


def test_accuracy(m, k, n):
    with torch.no_grad():
        input_tensor = torch.randn(m, k, dtype=torch.bfloat16).cuda()
        weight = torch.randn(n, k, dtype=torch.bfloat16, device="cuda")
        bias = torch.ones(1, n, dtype=torch.bfloat16).cuda() * 50

        linear = torch.nn.Linear(k, n, bias=True).cuda()
        linear.weight.data = weight
        linear.bias.data = bias

        ref_output_tensor = linear(input_tensor)

63
        mm = MMWeightMxfp6ActMxfp8(weight, bias)
Xtra's avatar
Xtra committed
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94

        output_tensor = mm.apply(input_tensor)

        # print(f"ref_output_tensor: {ref_output_tensor}")
        # print(f"output_tensor: {output_tensor}")

        # cosine
        cos = torch.nn.functional.cosine_similarity(ref_output_tensor.flatten(), output_tensor.flatten(), dim=0)
        print(f"cos : {cos}")


if __name__ == "__main__":
    test_sizes = [
        (32130, 5120, 5120),
        (512, 5120, 5120),
        (257, 5120, 5120),
        (32130, 5120, 13824),
        (32130, 13824, 5120),
        (75348, 5120, 5120),
        (75348, 13824, 5120),
        (32760, 1536, 1536),
        (512, 1536, 1536),
        (32760, 1536, 8960),
        (32760, 8960, 1536),
    ]

    for i, (m, k, n) in enumerate(test_sizes):
        print("-" * 30)
        print(f"测试 {i + 1}: 张量大小 ({m}, {k}, {n})")
        test_accuracy(m, k, n)
        test_speed(m, k, n)