model.py 3.68 KB
Newer Older
1
2
3
4
import json
import os

import torch
5
6
7
8
9

try:
    from diffusers.models.transformers.transformer_qwenimage import QwenImageTransformer2DModel
except ImportError:
    QwenImageTransformer2DModel = None
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85

from .infer.post_infer import QwenImagePostInfer
from .infer.pre_infer import QwenImagePreInfer
from .infer.transformer_infer import QwenImageTransformerInfer
from .layers.linear import DefaultLinear, replace_linear_with_custom
from .layers.normalization import DefaultLayerNorm, DefaultRMSNorm, replace_layernorm_with_custom, replace_rmsnorm_with_custom


class QwenImageTransformerModel:
    def __init__(self, config):
        self.config = config
        self.transformer = QwenImageTransformer2DModel.from_pretrained(os.path.join(config.model_path, "transformer"))
        # repalce linear & normalization
        self.transformer = replace_linear_with_custom(self.transformer, DefaultLinear)
        self.transformer = replace_layernorm_with_custom(self.transformer, DefaultLayerNorm)
        self.transformer = replace_rmsnorm_with_custom(self.transformer, DefaultRMSNorm)
        self.transformer.to(torch.device("cuda")).to(torch.bfloat16)

        with open(os.path.join(config.model_path, "transformer", "config.json"), "r") as f:
            transformer_config = json.load(f)
            self.in_channels = transformer_config["in_channels"]
        self.attention_kwargs = {}

        self._init_infer_class()
        self._init_infer()

    def set_scheduler(self, scheduler):
        self.scheduler = scheduler

    def _init_infer_class(self):
        if self.config["feature_caching"] == "NoCaching":
            self.transformer_infer_class = QwenImageTransformerInfer
        else:
            assert NotImplementedError
        self.pre_infer_class = QwenImagePreInfer
        self.post_infer_class = QwenImagePostInfer

    def _init_infer(self):
        self.transformer_infer = self.transformer_infer_class(self.config, self.transformer.transformer_blocks)
        self.pre_infer = self.pre_infer_class(self.config, self.transformer.img_in, self.transformer.txt_norm, self.transformer.txt_in, self.transformer.time_text_embed, self.transformer.pos_embed)
        self.post_infer = self.post_infer_class(self.config, self.transformer.norm_out, self.transformer.proj_out)

    @torch.no_grad()
    def infer(self, inputs):
        t = self.scheduler.timesteps[self.scheduler.step_index]
        latents = self.scheduler.latents
        timestep = t.expand(latents.shape[0]).to(latents.dtype)
        img_shapes = self.scheduler.img_shapes

        prompt_embeds = inputs["text_encoder_output"]["prompt_embeds"]
        prompt_embeds_mask = inputs["text_encoder_output"]["prompt_embeds_mask"]

        txt_seq_lens = prompt_embeds_mask.sum(dim=1).tolist() if prompt_embeds_mask is not None else None

        hidden_states, encoder_hidden_states, encoder_hidden_states_mask, pre_infer_out = self.pre_infer.infer(
            hidden_states=latents,
            timestep=timestep / 1000,
            guidance=self.scheduler.guidance,
            encoder_hidden_states_mask=prompt_embeds_mask,
            encoder_hidden_states=prompt_embeds,
            img_shapes=img_shapes,
            txt_seq_lens=txt_seq_lens,
            attention_kwargs=self.attention_kwargs,
        )

        encoder_hidden_states, hidden_states = self.transformer_infer.infer(
            hidden_states=hidden_states,
            encoder_hidden_states=encoder_hidden_states,
            encoder_hidden_states_mask=encoder_hidden_states_mask,
            pre_infer_out=pre_infer_out,
            attention_kwargs=self.attention_kwargs,
        )

        noise_pred = self.post_infer.infer(hidden_states, pre_infer_out[1])

        self.scheduler.noise_pred = noise_pred