model.py 5.48 KB
Newer Older
helloyongyang's avatar
helloyongyang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
import os
import torch
import time
import glob
from lightx2v.text2v.models.networks.wan.weights.pre_weights import WanPreWeights
from lightx2v.text2v.models.networks.wan.weights.post_weights import WanPostWeights
from lightx2v.text2v.models.networks.wan.weights.transformer_weights import (
    WanTransformerWeights,
)
from lightx2v.text2v.models.networks.wan.infer.pre_infer import WanPreInfer
from lightx2v.text2v.models.networks.wan.infer.post_infer import WanPostInfer
from lightx2v.text2v.models.networks.wan.infer.transformer_infer import (
    WanTransformerInfer,
)
from lightx2v.text2v.models.networks.wan.infer.feature_caching.transformer_infer import WanTransformerInferFeatureCaching
from safetensors import safe_open
Xinchi Huang's avatar
Xinchi Huang committed
17
from lightx2v.attentions.distributed.ulysses.wrap import parallelize_wan
helloyongyang's avatar
helloyongyang committed
18
19
20
21
22
23
24
25
26
27
28
29
30
31


class WanModel:
    pre_weight_class = WanPreWeights
    post_weight_class = WanPostWeights
    transformer_weight_class = WanTransformerWeights

    def __init__(self, model_path, config):
        self.model_path = model_path
        self.config = config
        self._init_infer_class()
        self._init_weights()
        self._init_infer()

Xinchi Huang's avatar
Xinchi Huang committed
32
33
34
        if config['parallel_attn']:
            parallelize_wan(self)

TorynCurtis's avatar
TorynCurtis committed
35
36
37
        if self.config['cpu_offload']:
            self.to_cpu()

helloyongyang's avatar
helloyongyang committed
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
    def _init_infer_class(self):
        self.pre_infer_class = WanPreInfer
        self.post_infer_class = WanPostInfer
        if self.config["feature_caching"] == "NoCaching":
            self.transformer_infer_class = WanTransformerInfer
        elif self.config["feature_caching"] == "Tea":
            self.transformer_infer_class = WanTransformerInferFeatureCaching
        else:
            raise NotImplementedError(
                f"Unsupported feature_caching type: {self.config['feature_caching']}"
            )

    def _load_safetensor_to_dict(self, file_path):
        with safe_open(file_path, framework="pt") as f:
            tensor_dict = {
                key: f.get_tensor(key).to(torch.bfloat16).cuda() for key in f.keys()
            }
        return tensor_dict

    def _load_ckpt(self):
        safetensors_pattern = os.path.join(self.model_path, "*.safetensors")
        safetensors_files = glob.glob(safetensors_pattern)

        if not safetensors_files:
            raise FileNotFoundError(
                f"No .safetensors files found in directory: {self.model_path}"
            )
        weight_dict = {}
        for file_path in safetensors_files:
            file_weights = self._load_safetensor_to_dict(file_path)
            weight_dict.update(file_weights)
        return weight_dict

    def _init_weights(self):
        weight_dict = self._load_ckpt()
        # init weights
        self.pre_weight = self.pre_weight_class(self.config)
TorynCurtis's avatar
TorynCurtis committed
75
        self.post_weight = self.post_weight_class(self.config)
helloyongyang's avatar
helloyongyang committed
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
        self.transformer_weights = self.transformer_weight_class(self.config)
        # load weights
        self.pre_weight.load_weights(weight_dict)
        self.post_weight.load_weights(weight_dict)
        self.transformer_weights.load_weights(weight_dict)

    def _init_infer(self):
        self.pre_infer = self.pre_infer_class(self.config)
        self.post_infer = self.post_infer_class(self.config)
        self.transformer_infer = self.transformer_infer_class(self.config)

    def set_scheduler(self, scheduler):
        self.scheduler = scheduler
        self.transformer_infer.set_scheduler(scheduler)

TorynCurtis's avatar
TorynCurtis committed
91
92
93
94
95
96
97
98
99
100
    def to_cpu(self):
        self.pre_weight.to_cpu()
        self.post_weight.to_cpu()
        self.transformer_weights.to_cpu()

    def to_cuda(self):
        self.pre_weight.to_cuda()
        self.post_weight.to_cuda()
        self.transformer_weights.to_cuda()

helloyongyang's avatar
helloyongyang committed
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
    @torch.no_grad()
    def infer(self, text_encoders_output, image_encoder_output, args):

        timestep = torch.stack([self.scheduler.timesteps[self.scheduler.step_index]])

        embed, grid_sizes, pre_infer_out = self.pre_infer.infer(
            self.pre_weight,
            [self.scheduler.latents],
            timestep,
            text_encoders_output["context"],
            self.scheduler.seq_len,
            image_encoder_output["clip_encoder_out"],
            [image_encoder_output["vae_encode_out"]],
        )
        x = self.transformer_infer.infer(
            self.transformer_weights, grid_sizes, embed, *pre_infer_out
        )
        noise_pred_cond = self.post_infer.infer(
            self.post_weight, x, embed, grid_sizes
        )[0]

        if self.config["feature_caching"] == "Tea":
            self.scheduler.cnt += 1
            if self.scheduler.cnt >= self.scheduler.num_steps:
                self.scheduler.cnt = 0

        embed, grid_sizes, pre_infer_out = self.pre_infer.infer(
            self.pre_weight,
            [self.scheduler.latents],
            timestep,
            text_encoders_output["context_null"],
            self.scheduler.seq_len,
            image_encoder_output["clip_encoder_out"],
            [image_encoder_output["vae_encode_out"]],
        )
        x = self.transformer_infer.infer(
            self.transformer_weights, grid_sizes, embed, *pre_infer_out
        )
        noise_pred_uncond = self.post_infer.infer(
            self.post_weight, x, embed, grid_sizes
        )[0]

        if self.config["feature_caching"] == "Tea":
            self.scheduler.cnt += 1
            if self.scheduler.cnt >= self.scheduler.num_steps:
                self.scheduler.cnt = 0

        self.scheduler.noise_pred = noise_pred_uncond + args.sample_guide_scale * (
            noise_pred_cond - noise_pred_uncond
        )