vae_tiny.py 5.51 KB
Newer Older
1
2
import torch
import torch.nn as nn
PengGao's avatar
PengGao committed
3

4
5
from lightx2v.utils.memory_profiler import peak_memory_decorator

PengGao's avatar
PengGao committed
6
7
from ..tae import TAEHV

8
9
10
11
12
13
14

class DotDict(dict):
    __getattr__ = dict.__getitem__
    __setattr__ = dict.__setitem__


class WanVAE_tiny(nn.Module):
gushiqiao's avatar
gushiqiao committed
15
    def __init__(self, vae_pth="taew2_1.pth", dtype=torch.bfloat16, device="cuda", need_scaled=False):
16
17
18
19
20
        super().__init__()
        self.dtype = dtype
        self.device = torch.device("cuda")
        self.taehv = TAEHV(vae_pth).to(self.dtype)
        self.temperal_downsample = [True, True, False]
gushiqiao's avatar
gushiqiao committed
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
        self.need_scaled = need_scaled

        if self.need_scaled:
            self.latents_mean = [
                -0.7571,
                -0.7089,
                -0.9113,
                0.1075,
                -0.1745,
                0.9653,
                -0.1517,
                1.5508,
                0.4134,
                -0.0715,
                0.5517,
                -0.3632,
                -0.1922,
                -0.9497,
                0.2503,
                -0.2921,
            ]

            self.latents_std = [
                2.8184,
                1.4541,
                2.3275,
                2.6558,
                1.2196,
                1.7708,
                2.6052,
                2.0743,
                3.2687,
                2.1526,
                2.8652,
                1.5579,
                1.6382,
                1.1253,
                2.8251,
                1.9160,
            ]

            self.z_dim = 16
63
64
65

    @peak_memory_decorator
    @torch.no_grad()
Yang Yong(雍洋)'s avatar
Yang Yong(雍洋) committed
66
    def decode(self, latents):
67
        latents = latents.unsqueeze(0)
gushiqiao's avatar
gushiqiao committed
68
69
70
71
72
73

        if self.need_scaled:
            latents_mean = torch.tensor(self.latents_mean).view(1, self.z_dim, 1, 1, 1).to(latents.device, latents.dtype)
            latents_std = 1.0 / torch.tensor(self.latents_std).view(1, self.z_dim, 1, 1, 1).to(latents.device, latents.dtype)
            latents = latents / latents_std + latents_mean

74
75
        # low-memory, set parallel=True for faster + higher memory
        return self.taehv.decode_video(latents.transpose(1, 2).to(self.dtype), parallel=False).transpose(1, 2).mul_(2).sub_(1)
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201


class Wan2_2_VAE_tiny(nn.Module):
    def __init__(self, vae_pth="taew2_2.pth", dtype=torch.bfloat16, device="cuda", need_scaled=False):
        super().__init__()
        self.dtype = dtype
        self.device = torch.device("cuda")
        self.taehv = TAEHV(vae_pth).to(self.dtype)
        self.need_scaled = need_scaled
        if self.need_scaled:
            self.latents_mean = [
                -0.2289,
                -0.0052,
                -0.1323,
                -0.2339,
                -0.2799,
                0.0174,
                0.1838,
                0.1557,
                -0.1382,
                0.0542,
                0.2813,
                0.0891,
                0.1570,
                -0.0098,
                0.0375,
                -0.1825,
                -0.2246,
                -0.1207,
                -0.0698,
                0.5109,
                0.2665,
                -0.2108,
                -0.2158,
                0.2502,
                -0.2055,
                -0.0322,
                0.1109,
                0.1567,
                -0.0729,
                0.0899,
                -0.2799,
                -0.1230,
                -0.0313,
                -0.1649,
                0.0117,
                0.0723,
                -0.2839,
                -0.2083,
                -0.0520,
                0.3748,
                0.0152,
                0.1957,
                0.1433,
                -0.2944,
                0.3573,
                -0.0548,
                -0.1681,
                -0.0667,
            ]

            self.latents_std = [
                0.4765,
                1.0364,
                0.4514,
                1.1677,
                0.5313,
                0.4990,
                0.4818,
                0.5013,
                0.8158,
                1.0344,
                0.5894,
                1.0901,
                0.6885,
                0.6165,
                0.8454,
                0.4978,
                0.5759,
                0.3523,
                0.7135,
                0.6804,
                0.5833,
                1.4146,
                0.8986,
                0.5659,
                0.7069,
                0.5338,
                0.4889,
                0.4917,
                0.4069,
                0.4999,
                0.6866,
                0.4093,
                0.5709,
                0.6065,
                0.6415,
                0.4944,
                0.5726,
                1.2042,
                0.5458,
                1.6887,
                0.3971,
                1.0600,
                0.3943,
                0.5537,
                0.5444,
                0.4089,
                0.7468,
                0.7744,
            ]

            self.z_dim = 48

    @peak_memory_decorator
    @torch.no_grad()
    def decode(self, latents):
        latents = latents.unsqueeze(0)

        if self.need_scaled:
            latents_mean = torch.tensor(self.latents_mean).view(1, self.z_dim, 1, 1, 1).to(latents.device, latents.dtype)
            latents_std = 1.0 / torch.tensor(self.latents_std).view(1, self.z_dim, 1, 1, 1).to(latents.device, latents.dtype)
            latents = latents / latents_std + latents_mean

        # low-memory, set parallel=True for faster + higher memory
        return self.taehv.decode_video(latents.transpose(1, 2).to(self.dtype), parallel=False).transpose(1, 2).mul_(2).sub_(1)