gradio_demo.py 40.2 KB
Newer Older
gushiqiao's avatar
gushiqiao committed
1
2
3
4
5
6
7
8
9
10
11
import os
import gradio as gr
import asyncio
import argparse
import json
import torch
import gc
from easydict import EasyDict
from datetime import datetime
from loguru import logger

gushiqiao's avatar
gushiqiao committed
12
13
import importlib.util
import psutil
gushiqiao's avatar
gushiqiao committed
14
import random
gushiqiao's avatar
gushiqiao committed
15
16
17
18
19
20
21
22
23
24

logger.add(
    "inference_logs.log",
    rotation="100 MB",
    encoding="utf-8",
    enqueue=True,
    backtrace=True,
    diagnose=True,
)

gushiqiao's avatar
gushiqiao committed
25
26
27
28
29
30
MAX_NUMPY_SEED = 2**32 - 1


def generate_random_seed():
    return random.randint(0, MAX_NUMPY_SEED)

gushiqiao's avatar
gushiqiao committed
31

gushiqiao's avatar
gushiqiao committed
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
def is_module_installed(module_name):
    try:
        spec = importlib.util.find_spec(module_name)
        return spec is not None
    except ModuleNotFoundError:
        return False


def get_available_quant_ops():
    available_ops = []

    vllm_installed = is_module_installed("vllm")
    if vllm_installed:
        available_ops.append(("vllm", True))
    else:
        available_ops.append(("vllm", False))

    sgl_installed = is_module_installed("sgl_kernel")
    if sgl_installed:
        available_ops.append(("sgl", True))
    else:
        available_ops.append(("sgl", False))

    q8f_installed = is_module_installed("q8_kernels")
    if q8f_installed:
        available_ops.append(("q8f", True))
    else:
        available_ops.append(("q8f", False))

    return available_ops


def get_available_attn_ops():
    available_ops = []

    vllm_installed = is_module_installed("flash_attn")
    if vllm_installed:
        available_ops.append(("flash_attn2", True))
    else:
        available_ops.append(("flash_attn2", False))

    sgl_installed = is_module_installed("flash_attn_interface")
    if sgl_installed:
        available_ops.append(("flash_attn3", True))
    else:
        available_ops.append(("flash_attn3", False))

    q8f_installed = is_module_installed("sageattention")
    if q8f_installed:
        available_ops.append(("sage_attn2", True))
    else:
        available_ops.append(("sage_attn2", False))

gushiqiao's avatar
gushiqiao committed
85
86
87
88
89
90
    torch_installed = is_module_installed("torch")
    if torch_installed:
        available_ops.append(("torch_sdpa", True))
    else:
        available_ops.append(("torch_sdpa", False))

gushiqiao's avatar
gushiqiao committed
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
    return available_ops


def get_gpu_memory(gpu_idx=0):
    if not torch.cuda.is_available():
        return 0
    try:
        with torch.cuda.device(gpu_idx):
            memory_info = torch.cuda.mem_get_info()
            total_memory = memory_info[1] / (1024**3)  # Convert bytes to GB
            return total_memory
    except Exception as e:
        logger.warning(f"Failed to get GPU memory: {e}")
        return 0


def get_cpu_memory():
    available_bytes = psutil.virtual_memory().available
    return available_bytes / 1024**3
gushiqiao's avatar
gushiqiao committed
110
111
112
113
114
115
116
117


def generate_unique_filename(base_dir="./saved_videos"):
    os.makedirs(base_dir, exist_ok=True)
    timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
    return os.path.join(base_dir, f"{model_cls}_{timestamp}.mp4")


gushiqiao's avatar
gushiqiao committed
118
119
120
121
122
123
124
125
126
127
def is_fp8_supported_gpu():
    if not torch.cuda.is_available():
        return False
    compute_capability = torch.cuda.get_device_capability(0)
    major, minor = compute_capability
    return (major == 8 and minor == 9) or (major >= 9)


global_runner = None
current_config = None
gushiqiao's avatar
gushiqiao committed
128
129
130
131
132
cur_dit_quant_scheme = None
cur_clip_quant_scheme = None
cur_t5_quant_scheme = None
cur_precision_mode = None
cur_enable_teacache = None
gushiqiao's avatar
gushiqiao committed
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148

available_quant_ops = get_available_quant_ops()
quant_op_choices = []
for op_name, is_installed in available_quant_ops:
    status_text = "✅ Installed" if is_installed else "❌ Not Installed"
    display_text = f"{op_name} ({status_text})"
    quant_op_choices.append((op_name, display_text))

available_attn_ops = get_available_attn_ops()
attn_op_choices = []
for op_name, is_installed in available_attn_ops:
    status_text = "✅ Installed" if is_installed else "❌ Not Installed"
    display_text = f"{op_name} ({status_text})"
    attn_op_choices.append((op_name, display_text))


gushiqiao's avatar
gushiqiao committed
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
def run_inference(
    model_type,
    task,
    prompt,
    negative_prompt,
    image_path,
    save_video_path,
    torch_compile,
    infer_steps,
    num_frames,
    resolution,
    seed,
    sample_shift,
    enable_teacache,
    teacache_thresh,
gushiqiao's avatar
gushiqiao committed
164
    use_ret_steps,
gushiqiao's avatar
gushiqiao committed
165
166
167
168
169
170
171
172
173
174
175
176
    enable_cfg,
    cfg_scale,
    dit_quant_scheme,
    t5_quant_scheme,
    clip_quant_scheme,
    fps,
    use_tiny_vae,
    use_tiling_vae,
    lazy_load,
    precision_mode,
    cpu_offload,
    offload_granularity,
gushiqiao's avatar
gushiqiao committed
177
    offload_ratio,
gushiqiao's avatar
gushiqiao committed
178
179
180
181
    t5_offload_granularity,
    attention_type,
    quant_op,
    rotary_chunk,
gushiqiao's avatar
gushiqiao committed
182
    rotary_chunk_size,
gushiqiao's avatar
gushiqiao committed
183
184
    clean_cuda_cache,
):
gushiqiao's avatar
gushiqiao committed
185
186
187
    quant_op = quant_op.split("(")[0].strip()
    attention_type = attention_type.split("(")[0].strip()

gushiqiao's avatar
gushiqiao committed
188
    global global_runner, current_config, model_path
gushiqiao's avatar
gushiqiao committed
189
    global cur_dit_quant_scheme, cur_clip_quant_scheme, cur_t5_quant_scheme, cur_precision_mode, cur_enable_teacache
gushiqiao's avatar
gushiqiao committed
190
191
192
193
194

    if os.path.exists(os.path.join(model_path, "config.json")):
        with open(os.path.join(model_path, "config.json"), "r") as f:
            model_config = json.load(f)

gushiqiao's avatar
gushiqiao committed
195
    if task == "Image to Video":
gushiqiao's avatar
gushiqiao committed
196
        task = "i2v"
gushiqiao's avatar
gushiqiao committed
197
198
    elif task == "Text to Video":
        task = "t2v"
gushiqiao's avatar
gushiqiao committed
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281

    if task == "t2v":
        if model_type == "Wan2.1 1.3B":
            # 1.3B
            coefficient = [
                [
                    -5.21862437e04,
                    9.23041404e03,
                    -5.28275948e02,
                    1.36987616e01,
                    -4.99875664e-02,
                ],
                [
                    2.39676752e03,
                    -1.31110545e03,
                    2.01331979e02,
                    -8.29855975e00,
                    1.37887774e-01,
                ],
            ]
        else:
            # 14B
            coefficient = [
                [
                    -3.03318725e05,
                    4.90537029e04,
                    -2.65530556e03,
                    5.87365115e01,
                    -3.15583525e-01,
                ],
                [
                    -5784.54975374,
                    5449.50911966,
                    -1811.16591783,
                    256.27178429,
                    -13.02252404,
                ],
            ]
    elif task == "i2v":
        if resolution in [
            "1280x720",
            "720x1280",
            "1280x544",
            "544x1280",
            "1104x832",
            "832x1104",
            "960x960",
        ]:
            # 720p
            coefficient = [
                [
                    8.10705460e03,
                    2.13393892e03,
                    -3.72934672e02,
                    1.66203073e01,
                    -4.17769401e-02,
                ],
                [-114.36346466, 65.26524496, -18.82220707, 4.91518089, -0.23412683],
            ]
        else:
            # 480p
            coefficient = [
                [
                    2.57151496e05,
                    -3.54229917e04,
                    1.40286849e03,
                    -1.35890334e01,
                    1.32517977e-01,
                ],
                [
                    -3.02331670e02,
                    2.23948934e02,
                    -5.25463970e01,
                    5.87348440e00,
                    -2.01973289e-01,
                ],
            ]

    save_video_path = generate_unique_filename()

    is_dit_quant = dit_quant_scheme != "bf16"
    is_t5_quant = t5_quant_scheme != "bf16"
    if is_t5_quant:
gushiqiao's avatar
gushiqiao committed
282
283
        t5_path = os.path.join(model_path, t5_quant_scheme)
        t5_quant_ckpt = os.path.join(t5_path, f"models_t5_umt5-xxl-enc-{t5_quant_scheme}.pth")
gushiqiao's avatar
gushiqiao committed
284
285
286
    else:
        t5_quant_ckpt = None

gushiqiao's avatar
gushiqiao committed
287
    is_clip_quant = clip_quant_scheme != "fp16"
gushiqiao's avatar
gushiqiao committed
288
    if is_clip_quant:
gushiqiao's avatar
gushiqiao committed
289
290
        clip_path = os.path.join(model_path, clip_quant_scheme)
        clip_quant_ckpt = os.path.join(clip_path, f"clip-{clip_quant_scheme}.pth")
gushiqiao's avatar
gushiqiao committed
291
292
293
    else:
        clip_quant_ckpt = None

gushiqiao's avatar
gushiqiao committed
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
    needs_reinit = (
        lazy_load
        or global_runner is None
        or current_config is None
        or cur_dit_quant_scheme is None
        or cur_dit_quant_scheme != dit_quant_scheme
        or cur_clip_quant_scheme is None
        or cur_clip_quant_scheme != clip_quant_scheme
        or cur_t5_quant_scheme is None
        or cur_t5_quant_scheme != t5_quant_scheme
        or cur_precision_mode is None
        or cur_precision_mode != precision_mode
        or cur_enable_teacache is None
        or cur_enable_teacache != enable_teacache
    )
gushiqiao's avatar
gushiqiao committed
309
310
311
312
313
314
315
316
317
318
319
320
321
322

    if torch_compile:
        os.environ["ENABLE_GRAPH_MODE"] = "true"
    else:
        os.environ["ENABLE_GRAPH_MODE"] = "false"
    if precision_mode == "bf16":
        os.environ["DTYPE"] = "BF16"
    else:
        os.environ.pop("DTYPE", None)

    if is_dit_quant:
        if quant_op == "vllm":
            mm_type = f"W-{dit_quant_scheme}-channel-sym-A-{dit_quant_scheme}-channel-sym-dynamic-Vllm"
        elif quant_op == "sgl":
gushiqiao's avatar
gushiqiao committed
323
324
325
326
            if dit_quant_scheme == "int8":
                mm_type = f"W-{dit_quant_scheme}-channel-sym-A-{dit_quant_scheme}-channel-sym-dynamic-Sgl-ActVllm"
            else:
                mm_type = f"W-{dit_quant_scheme}-channel-sym-A-{dit_quant_scheme}-channel-sym-dynamic-Sgl"
gushiqiao's avatar
gushiqiao committed
327
328
        elif quant_op == "q8f":
            mm_type = f"W-{dit_quant_scheme}-channel-sym-A-{dit_quant_scheme}-channel-sym-dynamic-Q8F"
gushiqiao's avatar
gushiqiao committed
329
330

        dit_quantized_ckpt = os.path.join(model_path, dit_quant_scheme)
gushiqiao's avatar
gushiqiao committed
331
332
333
        if os.path.exists(os.path.join(dit_quantized_ckpt, "config.json")):
            with open(os.path.join(dit_quantized_ckpt, "config.json"), "r") as f:
                quant_model_config = json.load(f)
gushiqiao's avatar
gushiqiao committed
334
335
    else:
        mm_type = "Default"
gushiqiao's avatar
gushiqiao committed
336
        dit_quantized_ckpt = None
gushiqiao's avatar
gushiqiao committed
337
        quant_model_config = {}
gushiqiao's avatar
gushiqiao committed
338
339
340
341
342
343

    config = {
        "infer_steps": infer_steps,
        "target_video_length": num_frames,
        "target_width": int(resolution.split("x")[0]),
        "target_height": int(resolution.split("x")[1]),
gushiqiao's avatar
gushiqiao committed
344
345
346
        "self_attn_1_type": attention_type,
        "cross_attn_1_type": attention_type,
        "cross_attn_2_type": attention_type,
gushiqiao's avatar
gushiqiao committed
347
348
349
350
351
352
        "seed": seed,
        "enable_cfg": enable_cfg,
        "sample_guide_scale": cfg_scale,
        "sample_shift": sample_shift,
        "cpu_offload": cpu_offload,
        "offload_granularity": offload_granularity,
gushiqiao's avatar
gushiqiao committed
353
        "offload_ratio": offload_ratio,
gushiqiao's avatar
gushiqiao committed
354
        "t5_offload_granularity": t5_offload_granularity,
gushiqiao's avatar
gushiqiao committed
355
        "dit_quantized_ckpt": dit_quantized_ckpt,
gushiqiao's avatar
gushiqiao committed
356
357
358
359
360
        "mm_config": {
            "mm_type": mm_type,
        },
        "fps": fps,
        "feature_caching": "Tea" if enable_teacache else "NoCaching",
gushiqiao's avatar
gushiqiao committed
361
362
        "coefficients": coefficient[0] if use_ret_steps else coefficient[1],
        "use_ret_steps": use_ret_steps,
gushiqiao's avatar
gushiqiao committed
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
        "teacache_thresh": teacache_thresh,
        "t5_quantized": is_t5_quant,
        "t5_quantized_ckpt": t5_quant_ckpt,
        "t5_quant_scheme": t5_quant_scheme,
        "clip_quantized": is_clip_quant,
        "clip_quantized_ckpt": clip_quant_ckpt,
        "clip_quant_scheme": clip_quant_scheme,
        "use_tiling_vae": use_tiling_vae,
        "tiny_vae": use_tiny_vae,
        "tiny_vae_path": (os.path.join(model_path, "taew2_1.pth") if use_tiny_vae else None),
        "lazy_load": lazy_load,
        "do_mm_calib": False,
        "parallel_attn_type": None,
        "parallel_vae": False,
        "max_area": False,
        "vae_stride": (4, 8, 8),
        "patch_size": (1, 2, 2),
        "lora_path": None,
        "strength_model": 1.0,
        "use_prompt_enhancer": False,
        "text_len": 512,
        "rotary_chunk": rotary_chunk,
gushiqiao's avatar
gushiqiao committed
385
        "rotary_chunk_size": rotary_chunk_size,
gushiqiao's avatar
gushiqiao committed
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
        "clean_cuda_cache": clean_cuda_cache,
    }

    args = argparse.Namespace(
        model_cls=model_cls,
        task=task,
        model_path=model_path,
        prompt_enhancer=None,
        prompt=prompt,
        negative_prompt=negative_prompt,
        image_path=image_path,
        save_video_path=save_video_path,
    )

    config.update({k: v for k, v in vars(args).items()})
    config = EasyDict(config)
    config["mode"] = "infer"
    config.update(model_config)
gushiqiao's avatar
gushiqiao committed
404
    config.update(quant_model_config)
gushiqiao's avatar
gushiqiao committed
405
406
407
408

    logger.info(f"Using model: {model_path}")
    logger.info(f"Inference configuration:\n{json.dumps(config, indent=4, ensure_ascii=False)}")

gushiqiao's avatar
gushiqiao committed
409
    # Initialize or reuse the runner
gushiqiao's avatar
gushiqiao committed
410
411
412
413
414
415
416
    runner = global_runner
    if needs_reinit:
        if runner is not None:
            del runner
            torch.cuda.empty_cache()
            gc.collect()

gushiqiao's avatar
gushiqiao committed
417
418
        from lightx2v.infer import init_runner  # noqa

gushiqiao's avatar
gushiqiao committed
419
420
        runner = init_runner(config)
        current_config = config
gushiqiao's avatar
gushiqiao committed
421
422
423
424
425
        cur_dit_quant_scheme = dit_quant_scheme
        cur_clip_quant_scheme = clip_quant_scheme
        cur_t5_quant_scheme = t5_quant_scheme
        cur_precision_mode = precision_mode
        cur_enable_teacache = enable_teacache
gushiqiao's avatar
gushiqiao committed
426
427
428

        if not lazy_load:
            global_runner = runner
gushiqiao's avatar
gushiqiao committed
429
430
    else:
        runner.config = config
gushiqiao's avatar
gushiqiao committed
431
432
433
434
435
436
437
438
439
440
441

    asyncio.run(runner.run_pipeline())

    if lazy_load:
        del runner
        torch.cuda.empty_cache()
        gc.collect()

    return save_video_path


gushiqiao's avatar
gushiqiao committed
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
def auto_configure(enable_auto_config, model_type, resolution):
    default_config = {
        "torch_compile_val": False,
        "lazy_load_val": False,
        "rotary_chunk_val": False,
        "rotary_chunk_size_val": 100,
        "clean_cuda_cache_val": False,
        "cpu_offload_val": False,
        "offload_granularity_val": "block",
        "offload_ratio_val": 1,
        "t5_offload_granularity_val": "model",
        "attention_type_val": attn_op_choices[0][1],
        "quant_op_val": quant_op_choices[0][1],
        "dit_quant_scheme_val": "bf16",
        "t5_quant_scheme_val": "bf16",
        "clip_quant_scheme_val": "fp16",
        "precision_mode_val": "fp32",
        "use_tiny_vae_val": False,
        "use_tiling_vae_val": False,
        "enable_teacache_val": False,
        "teacache_thresh_val": 0.26,
        "use_ret_steps_val": False,
    }
gushiqiao's avatar
gushiqiao committed
465

gushiqiao's avatar
gushiqiao committed
466
467
468
469
470
471
472
473
474
475
476
    if not enable_auto_config:
        return tuple(gr.update(value=default_config[key]) for key in default_config)

    gpu_memory = round(get_gpu_memory())
    cpu_memory = round(get_cpu_memory())

    if is_fp8_supported_gpu():
        quant_type = "fp8"
    else:
        quant_type = "int8"

gushiqiao's avatar
gushiqiao committed
477
    attn_priority = ["sage_attn2", "flash_attn3", "flash_attn2", "torch_sdpa"]
gushiqiao's avatar
gushiqiao committed
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
    quant_op_priority = ["sgl", "vllm", "q8f"]

    for op in attn_priority:
        if dict(available_attn_ops).get(op):
            default_config["attention_type_val"] = dict(attn_op_choices)[op]
            break

    for op in quant_op_priority:
        if dict(available_quant_ops).get(op):
            default_config["quant_op_val"] = dict(quant_op_choices)[op]
            break

    if resolution in [
        "1280x720",
        "720x1280",
        "1280x544",
        "544x1280",
        "1104x832",
        "832x1104",
        "960x960",
    ]:
        res = "720p"
    elif resolution in [
        "960x544",
        "544x960",
    ]:
        res = "540p"
    else:
        res = "480p"

    if model_type in ["Wan2.1 14B"]:
        is_14b = True
    else:
        is_14b = False

    if res == "720p" and is_14b:
        gpu_rules = [
            (80, {}),
            (48, {"cpu_offload_val": True, "offload_ratio_val": 0.5}),
            (40, {"cpu_offload_val": True, "offload_ratio_val": 0.8}),
            (32, {"cpu_offload_val": True, "offload_ratio_val": 1}),
            (
                24,
                {
                    "cpu_offload_val": True,
                    "offload_ratio_val": 1,
                    "t5_offload_granularity_val": "block",
                    "precision_mode_val": "bf16",
                    "use_tiling_vae_val": True,
                },
            ),
            (
                16,
                {
                    "cpu_offload_val": True,
                    "offload_ratio_val": 1,
                    "t5_offload_granularity_val": "block",
                    "precision_mode_val": "bf16",
                    "use_tiling_vae_val": True,
                    "offload_granularity_val": "phase",
                    "rotary_chunk_val": True,
                    "rotary_chunk_size_val": 100,
                },
            ),
            (
                12,
                {
                    "cpu_offload_val": True,
                    "offload_ratio_val": 1,
                    "t5_offload_granularity_val": "block",
                    "precision_mode_val": "bf16",
                    "use_tiling_vae_val": True,
                    "offload_granularity_val": "phase",
                    "rotary_chunk_val": True,
                    "rotary_chunk_size_val": 100,
                    "clean_cuda_cache_val": True,
                },
            ),
            (
                8,
                {
                    "cpu_offload_val": True,
                    "offload_ratio_val": 1,
                    "t5_offload_granularity_val": "block",
                    "precision_mode_val": "bf16",
                    "use_tiling_vae_val": True,
                    "offload_granularity_val": "phase",
                    "rotary_chunk_val": True,
                    "rotary_chunk_size_val": 100,
                    "clean_cuda_cache_val": True,
                    "t5_quant_scheme_val": quant_type,
                    "clip_quant_scheme_val": quant_type,
                    "dit_quant_scheme_val": quant_type,
                    "lazy_load_val": True,
                },
            ),
        ]

    elif is_14b:
        gpu_rules = [
            (80, {}),
            (48, {"cpu_offload_val": True, "offload_ratio_val": 0.2}),
            (40, {"cpu_offload_val": True, "offload_ratio_val": 0.5}),
            (24, {"cpu_offload_val": True, "offload_ratio_val": 0.8}),
            (
                16,
                {
                    "cpu_offload_val": True,
                    "offload_ratio_val": 1,
                    "t5_offload_granularity_val": "block",
                    "precision_mode_val": "bf16",
                    "use_tiling_vae_val": True,
                    "offload_granularity_val": "block",
                },
            ),
            (
                8,
                (
                    {
                        "cpu_offload_val": True,
                        "offload_ratio_val": 1,
                        "t5_offload_granularity_val": "block",
                        "precision_mode_val": "bf16",
                        "use_tiling_vae_val": True,
                        "offload_granularity_val": "phase",
                        "t5_quant_scheme_val": quant_type,
                        "clip_quant_scheme_val": quant_type,
                        "dit_quant_scheme_val": quant_type,
                        "lazy_load_val": True,
                        "rotary_chunk_val": True,
                        "rotary_chunk_size_val": 10000,
                    }
                    if res == "540p"
                    else {
                        "cpu_offload_val": True,
                        "offload_ratio_val": 1,
                        "t5_offload_granularity_val": "block",
                        "precision_mode_val": "bf16",
                        "use_tiling_vae_val": True,
                        "offload_granularity_val": "phase",
                        "t5_quant_scheme_val": quant_type,
                        "clip_quant_scheme_val": quant_type,
                        "dit_quant_scheme_val": quant_type,
                        "lazy_load_val": True,
                    }
                ),
            ),
        ]
gushiqiao's avatar
gushiqiao committed
626

gushiqiao's avatar
gushiqiao committed
627
628
629
630
631
632
633
    if is_14b:
        cpu_rules = [
            (128, {}),
            (64, {"dit_quant_scheme_val": quant_type}),
            (32, {"dit_quant_scheme_val": quant_type, "lazy_load_val": True}),
            (
                16,
gushiqiao's avatar
gushiqiao committed
634
635
636
637
638
639
                {
                    "dit_quant_scheme_val": quant_type,
                    "t5_quant_scheme_val": quant_type,
                    "clip_quant_scheme_val": quant_type,
                    "lazy_load_val": True,
                },
gushiqiao's avatar
gushiqiao committed
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
            ),
        ]

    for threshold, updates in gpu_rules:
        if gpu_memory >= threshold:
            default_config.update(updates)
            break

    for threshold, updates in cpu_rules:
        if cpu_memory >= threshold:
            default_config.update(updates)
            break

    return tuple(gr.update(value=default_config[key]) for key in default_config)


def main():
gushiqiao's avatar
gushiqiao committed
657
    def update_model_type(task_type):
gushiqiao's avatar
gushiqiao committed
658
        if task_type == "Image to Video":
gushiqiao's avatar
gushiqiao committed
659
            return gr.update(choices=["Wan2.1 14B"], value="Wan2.1 14B")
gushiqiao's avatar
gushiqiao committed
660
        elif task_type == "Text to Video":
gushiqiao's avatar
gushiqiao committed
661
662
663
            return gr.update(choices=["Wan2.1 14B", "Wan2.1 1.3B"], value="Wan2.1 14B")

    def toggle_image_input(task):
gushiqiao's avatar
gushiqiao committed
664
        return gr.update(visible=(task == "Image to Video"))
gushiqiao's avatar
gushiqiao committed
665
666

    with gr.Blocks(
gushiqiao's avatar
gushiqiao committed
667
        title="Lightx2v (Lightweight Video Inference and Generation Engine)",
gushiqiao's avatar
gushiqiao committed
668
669
670
671
672
673
674
675
676
        css="""
        .main-content { max-width: 1400px; margin: auto; }
        .output-video { max-height: 650px; }
        .warning { color: #ff6b6b; font-weight: bold; }
        .advanced-options { background: #f9f9ff; border-radius: 10px; padding: 15px; }
        .tab-button { font-size: 16px; padding: 10px 20px; }
    """,
    ) as demo:
        gr.Markdown(f"# 🎬 {model_cls} Video Generator")
gushiqiao's avatar
gushiqiao committed
677
        gr.Markdown(f"### Using Model: {model_path}")
gushiqiao's avatar
gushiqiao committed
678
679
680
681
682
683
684
685
686
687

        with gr.Tabs() as tabs:
            with gr.Tab("Basic Settings", id=1):
                with gr.Row():
                    with gr.Column(scale=4):
                        with gr.Group():
                            gr.Markdown("## 📥 Input Parameters")

                            with gr.Row():
                                task = gr.Dropdown(
gushiqiao's avatar
gushiqiao committed
688
689
                                    choices=["Image to Video", "Text to Video"],
                                    value="Image to Video",
gushiqiao's avatar
gushiqiao committed
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
                                    label="Task Type",
                                )
                                model_type = gr.Dropdown(
                                    choices=["Wan2.1 14B"],
                                    value="Wan2.1 14B",
                                    label="Model Type",
                                )
                                task.change(
                                    fn=update_model_type,
                                    inputs=task,
                                    outputs=model_type,
                                )

                            with gr.Row():
                                image_path = gr.Image(
                                    label="Input Image",
                                    type="filepath",
                                    height=300,
                                    interactive=True,
gushiqiao's avatar
gushiqiao committed
709
                                    visible=True,  # Initially visible
gushiqiao's avatar
gushiqiao committed
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
                                )

                                task.change(
                                    fn=toggle_image_input,
                                    inputs=task,
                                    outputs=image_path,
                                )

                            with gr.Row():
                                with gr.Column():
                                    prompt = gr.Textbox(
                                        label="Prompt",
                                        lines=3,
                                        placeholder="Describe the video content...",
                                        max_lines=5,
                                    )
                                with gr.Column():
                                    negative_prompt = gr.Textbox(
                                        label="Negative Prompt",
                                        lines=3,
gushiqiao's avatar
gushiqiao committed
730
                                        placeholder="What you don't want to appear in the video...",
gushiqiao's avatar
gushiqiao committed
731
                                        max_lines=5,
gushiqiao's avatar
gushiqiao committed
732
                                        value="镜头晃动,色调艳丽,过曝,静态,细节模糊不清,字幕,风格,作品,画作,画面,静止,整体发灰,最差质量,低质量,JPEG压缩残留,丑陋的,残缺的,多余的手指,画得不好的手部,画得不好的脸部,畸形的,毁容的,形态畸形的肢体,手指融合,静止不动的画面,杂乱的背景,三条腿,背景人很多,倒着走",
gushiqiao's avatar
gushiqiao committed
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
                                    )
                                with gr.Column():
                                    resolution = gr.Dropdown(
                                        choices=[
                                            # 720p
                                            ("1280x720 (16:9, 720p)", "1280x720"),
                                            ("720x1280 (9:16, 720p)", "720x1280"),
                                            ("1280x544 (21:9, 720p)", "1280x544"),
                                            ("544x1280 (9:21, 720p)", "544x1280"),
                                            ("1104x832 (4:3, 720p)", "1104x832"),
                                            ("832x1104 (3:4, 720p)", "832x1104"),
                                            ("960x960 (1:1, 720p)", "960x960"),
                                            # 480p
                                            ("960x544 (16:9, 540p)", "960x544"),
                                            ("544x960 (9:16, 540p)", "544x960"),
                                            ("832x480 (16:9, 480p)", "832x480"),
                                            ("480x832 (9:16, 480p)", "480x832"),
                                            ("832x624 (4:3, 480p)", "832x624"),
                                            ("624x832 (3:4, 480p)", "624x832"),
                                            ("720x720 (1:1, 480p)", "720x720"),
                                            ("512x512 (1:1, 480p)", "512x512"),
                                        ],
gushiqiao's avatar
gushiqiao committed
755
756
                                        value="832x480",
                                        label="Maximum Resolution",
gushiqiao's avatar
gushiqiao committed
757
                                    )
gushiqiao's avatar
gushiqiao committed
758
                                with gr.Column(scale=9):
gushiqiao's avatar
gushiqiao committed
759
760
                                    seed = gr.Slider(
                                        label="Random Seed",
gushiqiao's avatar
gushiqiao committed
761
762
                                        minimum=0,
                                        maximum=MAX_NUMPY_SEED,
gushiqiao's avatar
gushiqiao committed
763
                                        step=1,
gushiqiao's avatar
gushiqiao committed
764
                                        value=generate_random_seed(),
gushiqiao's avatar
gushiqiao committed
765
                                    )
gushiqiao's avatar
gushiqiao committed
766
767
768
769
770
771
                                with gr.Column(scale=1):
                                    randomize_btn = gr.Button("🎲 Randomize", variant="secondary")

                                randomize_btn.click(fn=generate_random_seed, inputs=None, outputs=seed)

                                with gr.Column():
gushiqiao's avatar
gushiqiao committed
772
773
774
775
776
                                    infer_steps = gr.Slider(
                                        label="Inference Steps",
                                        minimum=1,
                                        maximum=100,
                                        step=1,
gushiqiao's avatar
gushiqiao committed
777
778
                                        value=40,
                                        info="Number of inference steps for video generation. Increasing steps may improve quality but reduce speed.",
gushiqiao's avatar
gushiqiao committed
779
780
                                    )

gushiqiao's avatar
gushiqiao committed
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
                            enable_cfg = gr.Checkbox(
                                label="Enable Classifier-Free Guidance",
                                value=True,
                                info="Enable classifier-free guidance to control prompt strength",
                            )
                            cfg_scale = gr.Slider(
                                label="CFG Scale Factor",
                                minimum=1,
                                maximum=10,
                                step=1,
                                value=5,
                                info="Controls the influence strength of the prompt. Higher values give more influence to the prompt.",
                            )
                            sample_shift = gr.Slider(
                                label="Distribution Shift",
                                value=5,
                                minimum=0,
                                maximum=10,
                                step=1,
                                info="Controls the degree of distribution shift for samples. Larger values indicate more significant shifts.",
gushiqiao's avatar
gushiqiao committed
801
802
                            )

gushiqiao's avatar
gushiqiao committed
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
                            fps = gr.Slider(
                                label="Frames Per Second (FPS)",
                                minimum=8,
                                maximum=30,
                                step=1,
                                value=16,
                                info="Frames per second of the video. Higher FPS results in smoother videos.",
                            )
                            num_frames = gr.Slider(
                                label="Total Frames",
                                minimum=16,
                                maximum=120,
                                step=1,
                                value=81,
                                info="Total number of frames in the video. More frames result in longer videos.",
                            )
gushiqiao's avatar
gushiqiao committed
819

gushiqiao's avatar
gushiqiao committed
820
821
822
823
824
                        save_video_path = gr.Textbox(
                            label="Output Video Path",
                            value=generate_unique_filename(),
                            info="Must include .mp4 extension. If left blank or using the default value, a unique filename will be automatically generated.",
                        )
gushiqiao's avatar
gushiqiao committed
825
826
827
828
829
830
831
832
833
834
                    with gr.Column(scale=6):
                        gr.Markdown("## 📤 Generated Video")
                        output_video = gr.Video(
                            label="Result",
                            height=624,
                            width=360,
                            autoplay=True,
                            elem_classes=["output-video"],
                        )

gushiqiao's avatar
gushiqiao committed
835
                        infer_btn = gr.Button("Generate Video", variant="primary", size="lg")
gushiqiao's avatar
gushiqiao committed
836

gushiqiao's avatar
gushiqiao committed
837
838
            with gr.Tab("⚙️ Advanced Options", id=2):
                with gr.Group(elem_classes="advanced-options"):
gushiqiao's avatar
gushiqiao committed
839
                    gr.Markdown("### Auto configuration")
gushiqiao's avatar
gushiqiao committed
840
                    with gr.Row():
gushiqiao's avatar
gushiqiao committed
841
842
                        enable_auto_config = gr.Checkbox(
                            label="Auto configuration",
gushiqiao's avatar
gushiqiao committed
843
                            value=False,
gushiqiao's avatar
gushiqiao committed
844
                            info="Auto-tune optimization settings for your GPU",
gushiqiao's avatar
gushiqiao committed
845
846
                        )

gushiqiao's avatar
gushiqiao committed
847
                    gr.Markdown("### GPU Memory Optimization")
gushiqiao's avatar
gushiqiao committed
848
                    with gr.Row():
gushiqiao's avatar
gushiqiao committed
849
850
                        rotary_chunk = gr.Checkbox(
                            label="Chunked Rotary Position Embedding",
gushiqiao's avatar
gushiqiao committed
851
                            value=False,
gushiqiao's avatar
gushiqiao committed
852
                            info="When enabled, processes rotary position embeddings in chunks to save GPU memory.",
gushiqiao's avatar
gushiqiao committed
853
854
                        )

gushiqiao's avatar
gushiqiao committed
855
856
857
858
859
860
861
                        rotary_chunk_size = gr.Slider(
                            label="Rotary Embedding Chunk Size",
                            value=100,
                            minimum=100,
                            maximum=10000,
                            step=100,
                            info="Controls the chunk size for applying rotary embeddings. Larger values may improve performance but increase memory usage. Only effective if 'rotary_chunk' is checked.",
gushiqiao's avatar
gushiqiao committed
862
863
864
865
866
                        )

                        clean_cuda_cache = gr.Checkbox(
                            label="Clean CUDA Memory Cache",
                            value=False,
gushiqiao's avatar
gushiqiao committed
867
                            info="When enabled, frees up GPU memory promptly but slows down inference.",
gushiqiao's avatar
gushiqiao committed
868
869
                        )

gushiqiao's avatar
gushiqiao committed
870
                    gr.Markdown("### Asynchronous Offloading")
gushiqiao's avatar
gushiqiao committed
871
872
                    with gr.Row():
                        cpu_offload = gr.Checkbox(
gushiqiao's avatar
gushiqiao committed
873
874
875
876
877
878
879
                            label="CPU Offloading",
                            value=False,
                            info="Offload parts of the model computation from GPU to CPU to reduce GPU memory usage",
                        )

                        lazy_load = gr.Checkbox(
                            label="Enable Lazy Loading",
gushiqiao's avatar
gushiqiao committed
880
                            value=False,
gushiqiao's avatar
gushiqiao committed
881
                            info="Lazy load model components during inference. Requires CPU loading and DIT quantization.",
gushiqiao's avatar
gushiqiao committed
882
                        )
gushiqiao's avatar
gushiqiao committed
883

gushiqiao's avatar
gushiqiao committed
884
885
886
                        offload_granularity = gr.Dropdown(
                            label="Dit Offload Granularity",
                            choices=["block", "phase"],
gushiqiao's avatar
gushiqiao committed
887
888
889
890
891
892
893
894
895
896
                            value="phase",
                            info="Sets Dit model offloading granularity: blocks or computational phases",
                        )
                        offload_ratio = gr.Slider(
                            label="Offload ratio for Dit model",
                            minimum=0.0,
                            maximum=1.0,
                            step=0.1,
                            value=1.0,
                            info="Controls how much of the Dit model is offloaded to the CPU",
gushiqiao's avatar
gushiqiao committed
897
898
899
900
                        )
                        t5_offload_granularity = gr.Dropdown(
                            label="T5 Encoder Offload Granularity",
                            choices=["model", "block"],
gushiqiao's avatar
gushiqiao committed
901
902
                            value="model",
                            info="Controls the granularity when offloading the T5 Encoder model to CPU",
gushiqiao's avatar
gushiqiao committed
903
904
905
906
                        )

                    gr.Markdown("### Low-Precision Quantization")
                    with gr.Row():
gushiqiao's avatar
gushiqiao committed
907
908
909
910
911
912
                        torch_compile = gr.Checkbox(
                            label="Torch Compile",
                            value=False,
                            info="Use torch.compile to accelerate the inference process",
                        )

gushiqiao's avatar
gushiqiao committed
913
914
                        attention_type = gr.Dropdown(
                            label="Attention Operator",
gushiqiao's avatar
gushiqiao committed
915
916
917
                            choices=[op[1] for op in attn_op_choices],
                            value=attn_op_choices[0][1],
                            info="Use appropriate attention operators to accelerate inference",
gushiqiao's avatar
gushiqiao committed
918
919
                        )
                        quant_op = gr.Dropdown(
gushiqiao's avatar
gushiqiao committed
920
921
922
923
924
                            label="Quantization Matmul Operator",
                            choices=[op[1] for op in quant_op_choices],
                            value=quant_op_choices[0][1],
                            info="Select the quantization matrix multiplication operator to accelerate inference",
                            interactive=True,
gushiqiao's avatar
gushiqiao committed
925
926
927
928
929
                        )
                        dit_quant_scheme = gr.Dropdown(
                            label="Dit",
                            choices=["fp8", "int8", "bf16"],
                            value="bf16",
gushiqiao's avatar
gushiqiao committed
930
                            info="Quantization precision for the Dit model",
gushiqiao's avatar
gushiqiao committed
931
932
933
934
935
                        )
                        t5_quant_scheme = gr.Dropdown(
                            label="T5 Encoder",
                            choices=["fp8", "int8", "bf16"],
                            value="bf16",
gushiqiao's avatar
gushiqiao committed
936
                            info="Quantization precision for the T5 Encoder model",
gushiqiao's avatar
gushiqiao committed
937
938
939
940
941
                        )
                        clip_quant_scheme = gr.Dropdown(
                            label="Clip Encoder",
                            choices=["fp8", "int8", "fp16"],
                            value="fp16",
gushiqiao's avatar
gushiqiao committed
942
                            info="Quantization precision for the Clip Encoder",
gushiqiao's avatar
gushiqiao committed
943
944
                        )
                        precision_mode = gr.Dropdown(
gushiqiao's avatar
gushiqiao committed
945
                            label="Precision Mode for Sensitive Layers",
gushiqiao's avatar
gushiqiao committed
946
                            choices=["fp32", "bf16"],
gushiqiao's avatar
gushiqiao committed
947
                            value="fp32",
gushiqiao's avatar
gushiqiao committed
948
                            info="Select the numerical precision for critical model components like normalization and embedding layers. FP32 offers higher accuracy, while BF16 improves performance on compatible hardware.",
gushiqiao's avatar
gushiqiao committed
949
950
951
952
953
                        )

                    gr.Markdown("### Variational Autoencoder (VAE)")
                    with gr.Row():
                        use_tiny_vae = gr.Checkbox(
gushiqiao's avatar
gushiqiao committed
954
                            label="Use Tiny VAE",
gushiqiao's avatar
gushiqiao committed
955
956
957
958
                            value=False,
                            info="Use a lightweight VAE model to accelerate the decoding process",
                        )
                        use_tiling_vae = gr.Checkbox(
gushiqiao's avatar
gushiqiao committed
959
                            label="VAE Tiling Inference",
gushiqiao's avatar
gushiqiao committed
960
                            value=False,
gushiqiao's avatar
gushiqiao committed
961
                            info="Use VAE tiling inference to reduce GPU memory usage",
gushiqiao's avatar
gushiqiao committed
962
963
964
965
966
                        )

                    gr.Markdown("### Feature Caching")
                    with gr.Row():
                        enable_teacache = gr.Checkbox(
gushiqiao's avatar
gushiqiao committed
967
                            label="Tea Cache",
gushiqiao's avatar
gushiqiao committed
968
969
970
971
972
973
974
975
                            value=False,
                            info="Cache features during inference to reduce the number of inference steps",
                        )
                        teacache_thresh = gr.Slider(
                            label="Tea Cache Threshold",
                            value=0.26,
                            minimum=0,
                            maximum=1,
gushiqiao's avatar
gushiqiao committed
976
977
978
979
980
981
                            info="Higher acceleration may result in lower quality —— Setting to 0.1 provides ~2.0x acceleration, setting to 0.2 provides ~3.0x acceleration",
                        )
                        use_ret_steps = gr.Checkbox(
                            label="Cache Only Key Steps",
                            value=False,
                            info="When checked, cache is written only at key steps where the scheduler returns results; when unchecked, cache is written at all steps to ensure the highest quality",
gushiqiao's avatar
gushiqiao committed
982
983
                        )

gushiqiao's avatar
gushiqiao committed
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
                enable_auto_config.change(
                    fn=auto_configure,
                    inputs=[enable_auto_config, model_type, resolution],
                    outputs=[
                        torch_compile,
                        lazy_load,
                        rotary_chunk,
                        rotary_chunk_size,
                        clean_cuda_cache,
                        cpu_offload,
                        offload_granularity,
                        offload_ratio,
                        t5_offload_granularity,
                        attention_type,
                        quant_op,
                        dit_quant_scheme,
                        t5_quant_scheme,
                        clip_quant_scheme,
                        precision_mode,
                        use_tiny_vae,
                        use_tiling_vae,
                        enable_teacache,
                        teacache_thresh,
                        use_ret_steps,
                    ],
                )

gushiqiao's avatar
gushiqiao committed
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
        infer_btn.click(
            fn=run_inference,
            inputs=[
                model_type,
                task,
                prompt,
                negative_prompt,
                image_path,
                save_video_path,
                torch_compile,
                infer_steps,
                num_frames,
                resolution,
                seed,
                sample_shift,
                enable_teacache,
                teacache_thresh,
gushiqiao's avatar
gushiqiao committed
1028
                use_ret_steps,
gushiqiao's avatar
gushiqiao committed
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
                enable_cfg,
                cfg_scale,
                dit_quant_scheme,
                t5_quant_scheme,
                clip_quant_scheme,
                fps,
                use_tiny_vae,
                use_tiling_vae,
                lazy_load,
                precision_mode,
                cpu_offload,
                offload_granularity,
gushiqiao's avatar
gushiqiao committed
1041
                offload_ratio,
gushiqiao's avatar
gushiqiao committed
1042
1043
1044
1045
                t5_offload_granularity,
                attention_type,
                quant_op,
                rotary_chunk,
gushiqiao's avatar
gushiqiao committed
1046
                rotary_chunk_size,
gushiqiao's avatar
gushiqiao committed
1047
1048
1049
1050
1051
1052
1053
1054
1055
                clean_cuda_cache,
            ],
            outputs=output_video,
        )

    demo.launch(share=True, server_port=args.server_port, server_name=args.server_name)


if __name__ == "__main__":
gushiqiao's avatar
gushiqiao committed
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
    parser = argparse.ArgumentParser(description="Light Video Generation")
    parser.add_argument("--model_path", type=str, required=True, help="Model folder path")
    parser.add_argument(
        "--model_cls",
        type=str,
        choices=["wan2.1"],
        default="wan2.1",
        help="Model class to use",
    )
    parser.add_argument("--server_port", type=int, default=7862, help="Server port")
    parser.add_argument("--server_name", type=str, default="0.0.0.0", help="Server ip")
    args = parser.parse_args()

    global model_path, model_cls
    model_path = args.model_path
    model_cls = args.model_cls

gushiqiao's avatar
gushiqiao committed
1073
    main()