service_utils.py 5.01 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
import sys
import psutil
import signal
import base64
from PIL import Image
from loguru import logger
from typing import Optional, List
from datetime import datetime
from pydantic import BaseModel
import threading
import torch
import io


class ProcessManager:
    @staticmethod
    def kill_all_related_processes():
        """Kill the current process and all its child processes"""
        current_process = psutil.Process()
        children = current_process.children(recursive=True)
        for child in children:
            try:
                child.kill()
            except Exception as e:
                logger.info(f"Failed to kill child process {child.pid}: {e}")
        try:
            current_process.kill()
        except Exception as e:
            logger.info(f"Failed to kill main process: {e}")

    @staticmethod
    def signal_handler(sig, frame):
        logger.info("\nReceived Ctrl+C, shutting down all related processes...")
        ProcessManager.kill_all_related_processes()
        sys.exit(0)

    @staticmethod
    def register_signal_handler():
        """Register the signal handler for SIGINT"""
        signal.signal(signal.SIGINT, ProcessManager.signal_handler)


class TaskStatusMessage(BaseModel):
    task_id: str


class BaseServiceStatus:
    _lock = threading.Lock()
    _current_task = None
    _result_store = {}

    @classmethod
    def start_task(cls, message):
        with cls._lock:
            if cls._current_task is not None:
                raise RuntimeError("Service busy")
            if message.task_id_must_unique and message.task_id in cls._result_store:
                raise RuntimeError(f"Task ID {message.task_id} already exists")
            cls._current_task = {"message": message, "start_time": datetime.now()}
            return message.task_id

    @classmethod
    def complete_task(cls, message):
        with cls._lock:
            cls._result_store[message.task_id] = {"success": True, "message": message, "start_time": cls._current_task["start_time"], "completion_time": datetime.now()}
            cls._current_task = None

    @classmethod
    def record_failed_task(cls, message, error: Optional[str] = None):
        """Record a failed task with an error message."""
        with cls._lock:
            cls._result_store[message.task_id] = {"success": False, "message": message, "start_time": cls._current_task["start_time"], "error": error}
            cls._current_task = None

    @classmethod
    def clean_stopped_task(cls):
        with cls._lock:
            if cls._current_task:
                message = cls._current_task["message"]
                error = "Task stopped by user"
                cls._result_store[message.task_id] = {"success": False, "message": message, "start_time": cls._current_task["start_time"], "error": error}
                cls._current_task = None

    @classmethod
    def get_status_task_id(cls, task_id: str):
        with cls._lock:
            if cls._current_task and cls._current_task["message"].task_id == task_id:
                return {"task_status": "processing"}
            if task_id in cls._result_store:
                return {"task_status": "completed", **cls._result_store[task_id]}
            return {"task_status": "not_found"}

    @classmethod
    def get_status_service(cls):
        with cls._lock:
            if cls._current_task:
                return {"service_status": "busy", "task_id": cls._current_task["message"].task_id}
            return {"service_status": "idle"}

    @classmethod
    def get_all_tasks(cls):
        with cls._lock:
            return cls._result_store


class TensorTransporter:
    def __init__(self):
        self.buffer = io.BytesIO()

    def to_device(self, data, device):
        if isinstance(data, dict):
            return {key: self.to_device(value, device) for key, value in data.items()}
113
114
        elif isinstance(data, list):
            return [self.to_device(item, device) for item in data]
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
        elif isinstance(data, torch.Tensor):
            return data.to(device)
        else:
            return data

    def prepare_tensor(self, data: torch.Tensor) -> bytes:
        self.buffer.seek(0)
        self.buffer.truncate()
        torch.save(self.to_device(data, "cpu"), self.buffer)
        return base64.b64encode(self.buffer.getvalue()).decode("utf-8")

    def load_tensor(self, tensor_base64: str, device="cuda") -> torch.Tensor:
        tensor_bytes = base64.b64decode(tensor_base64)
        with io.BytesIO(tensor_bytes) as buffer:
            return self.to_device(torch.load(buffer), device)


class ImageTransporter:
    def __init__(self):
        self.buffer = io.BytesIO()

    def prepare_image(self, image: Image.Image) -> bytes:
        self.buffer.seek(0)
        self.buffer.truncate()
        image.save(self.buffer, format="PNG")
        return base64.b64encode(self.buffer.getvalue()).decode("utf-8")

    def load_image(self, image_base64: bytes) -> Image.Image:
        image_bytes = base64.b64decode(image_base64)
        with io.BytesIO(image_bytes) as buffer:
            return Image.open(buffer).convert("RGB")