quant_utils.py 7.99 KB
Newer Older
helloyongyang's avatar
helloyongyang committed
1
import torch
root's avatar
root committed
2
from loguru import logger
helloyongyang's avatar
helloyongyang committed
3

helloyongyang's avatar
helloyongyang committed
4
5
6
7
8
9
try:
    from qtorch.quant import float_quantize
except Exception:
    logger.warning("qtorch not found, please install qtorch.Please install qtorch (pip install qtorch).")
    float_quantize = None

helloyongyang's avatar
helloyongyang committed
10
11
12
13
14
15
16

class BaseQuantizer(object):
    def __init__(self, bit, symmetric, granularity, **kwargs):
        self.bit = bit
        self.sym = symmetric
        self.granularity = granularity
        self.kwargs = kwargs
Dongz's avatar
Dongz committed
17
18
19
        if self.granularity == "per_group":
            self.group_size = self.kwargs["group_size"]
        self.calib_algo = self.kwargs.get("calib_algo", "minmax")
helloyongyang's avatar
helloyongyang committed
20
21

    def get_tensor_range(self, tensor):
Dongz's avatar
Dongz committed
22
        if self.calib_algo == "minmax":
helloyongyang's avatar
helloyongyang committed
23
            return self.get_minmax_range(tensor)
Dongz's avatar
Dongz committed
24
        elif self.calib_algo == "mse":
helloyongyang's avatar
helloyongyang committed
25
26
            return self.get_mse_range(tensor)
        else:
Dongz's avatar
Dongz committed
27
            raise ValueError(f"Unsupported calibration algorithm: {self.calib_algo}")
helloyongyang's avatar
helloyongyang committed
28
29

    def get_minmax_range(self, tensor):
Dongz's avatar
Dongz committed
30
        if self.granularity == "per_tensor":
helloyongyang's avatar
helloyongyang committed
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
            max_val = torch.max(tensor)
            min_val = torch.min(tensor)
        else:
            max_val = tensor.amax(dim=-1, keepdim=True)
            min_val = tensor.amin(dim=-1, keepdim=True)
        return (min_val, max_val)

    def get_mse_range(self, tensor):
        raise NotImplementedError

    def get_qparams(self, tensor_range, device):
        min_val, max_val = tensor_range[0], tensor_range[1]
        qmin = self.qmin.to(device)
        qmax = self.qmax.to(device)
        if self.sym:
            abs_max = torch.max(max_val.abs(), min_val.abs())
            abs_max = abs_max.clamp(min=1e-5)
            scales = abs_max / qmax
            zeros = torch.tensor(0.0)
        else:
            scales = (max_val - min_val).clamp(min=1e-5) / (qmax - qmin)
            zeros = (qmin - torch.round(min_val / scales)).clamp(qmin, qmax)
        return scales, zeros, qmax, qmin

    def reshape_tensor(self, tensor, allow_padding=False):
Dongz's avatar
Dongz committed
56
        if self.granularity == "per_group":
helloyongyang's avatar
helloyongyang committed
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
            t = tensor.reshape(-1, self.group_size)
        else:
            t = tensor
        return t

    def restore_tensor(self, tensor, shape):
        if tensor.shape == shape:
            t = tensor
        else:
            t = tensor.reshape(shape)
        return t

    def get_tensor_qparams(self, tensor):
        tensor = self.reshape_tensor(tensor)
        tensor_range = self.get_tensor_range(tensor)
        scales, zeros, qmax, qmin = self.get_qparams(tensor_range, tensor.device)
        return tensor, scales, zeros, qmax, qmin

    def fake_quant_tensor(self, tensor):
        org_shape = tensor.shape
        org_dtype = tensor.dtype
        tensor, scales, zeros, qmax, qmin = self.get_tensor_qparams(tensor)
        tensor = self.quant_dequant(tensor, scales, zeros, qmax, qmin)
        tensor = self.restore_tensor(tensor, org_shape).to(org_dtype)
        return tensor

    def real_quant_tensor(self, tensor):
        org_shape = tensor.shape
        tensor, scales, zeros, qmax, qmin = self.get_tensor_qparams(tensor)
        tensor = self.quant(tensor, scales, zeros, qmax, qmin)
        tensor = self.restore_tensor(tensor, org_shape)
Dongz's avatar
Dongz committed
88
        if self.sym:
helloyongyang's avatar
helloyongyang committed
89
90
91
92
93
94
95
            zeros = None
        return tensor, scales, zeros


class IntegerQuantizer(BaseQuantizer):
    def __init__(self, bit, symmetric, granularity, **kwargs):
        super().__init__(bit, symmetric, granularity, **kwargs)
Dongz's avatar
Dongz committed
96
97
98
        if "int_range" in self.kwargs:
            self.qmin = self.kwargs["int_range"][0]
            self.qmax = self.kwargs["int_range"][1]
helloyongyang's avatar
helloyongyang committed
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
        else:
            if self.sym:
                self.qmin = -(2 ** (self.bit - 1))
                self.qmax = 2 ** (self.bit - 1) - 1
            else:
                self.qmin = 0.0
                self.qmax = 2**self.bit - 1

        self.qmin = torch.tensor(self.qmin)
        self.qmax = torch.tensor(self.qmax)
        self.dst_nbins = 2**bit

    def quant(self, tensor, scales, zeros, qmax, qmin):
        tensor = torch.clamp(torch.round(tensor / scales) + zeros, qmin, qmax)
        return tensor

    def dequant(self, tensor, scales, zeros):
        tensor = (tensor - zeros) * scales
        return tensor

Dongz's avatar
Dongz committed
119
120
121
122
123
124
125
126
    def quant_dequant(
        self,
        tensor,
        scales,
        zeros,
        qmax,
        qmin,
    ):
helloyongyang's avatar
helloyongyang committed
127
128
129
130
131
132
133
134
        tensor = self.quant(tensor, scales, zeros, qmax, qmin)
        tensor = self.dequant(tensor, scales, zeros)
        return tensor


class FloatQuantizer(BaseQuantizer):
    def __init__(self, bit, symmetric, granularity, **kwargs):
        super().__init__(bit, symmetric, granularity, **kwargs)
Dongz's avatar
Dongz committed
135
136
137
138
        assert self.bit in ["e4m3", "e5m2"], f"Unsupported bit configuration: {self.bit}"
        assert self.sym

        if self.bit == "e4m3":
helloyongyang's avatar
helloyongyang committed
139
140
141
            self.e_bits = 4
            self.m_bits = 3
            self.fp_dtype = torch.float8_e4m3fn
Dongz's avatar
Dongz committed
142
        elif self.bit == "e5m2":
helloyongyang's avatar
helloyongyang committed
143
144
145
146
            self.e_bits = 5
            self.m_bits = 2
            self.fp_dtype = torch.float8_e5m2
        else:
Dongz's avatar
Dongz committed
147
            raise ValueError(f"Unsupported bit configuration: {self.bit}")
helloyongyang's avatar
helloyongyang committed
148
149
150
151
152
153
154
155
156

        finfo = torch.finfo(self.fp_dtype)
        self.qmin, self.qmax = finfo.min, finfo.max

        self.qmax = torch.tensor(self.qmax)
        self.qmin = torch.tensor(self.qmin)

    def quant(self, tensor, scales, zeros, qmax, qmin):
        scaled_tensor = tensor / scales + zeros
Dongz's avatar
Dongz committed
157
        scaled_tensor = torch.clip(scaled_tensor, self.qmin.cuda(), self.qmax.cuda())
helloyongyang's avatar
helloyongyang committed
158
        org_dtype = scaled_tensor.dtype
Dongz's avatar
Dongz committed
159
        q_tensor = float_quantize(scaled_tensor.float(), self.e_bits, self.m_bits, rounding="nearest")
helloyongyang's avatar
helloyongyang committed
160
161
162
163
164
165
166
167
168
169
170
171
172
        q_tensor.to(org_dtype)
        return q_tensor

    def dequant(self, tensor, scales, zeros):
        tensor = (tensor - zeros) * scales
        return tensor

    def quant_dequant(self, tensor, scales, zeros, qmax, qmin):
        tensor = self.quant(tensor, scales, zeros, qmax, qmin)
        tensor = self.dequant(tensor, scales, zeros)
        return tensor


173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
# 导入 VLLM 的量化函数
try:
    from vllm import _custom_ops as ops
except ImportError:
    ops = None


def quant_fp8_vllm(input_tensor):
    input_tensor_fp8, input_tensor_scale = ops.scaled_fp8_quant(input_tensor, scale=None, scale_ub=None, use_per_token_if_dynamic=True)
    return input_tensor_fp8, input_tensor_scale


def dequant_fp8_vllm(input_tensor_fp8, input_tensor_scale, dtype):
    return input_tensor_fp8.to(dtype) * input_tensor_scale.to(dtype)


Dongz's avatar
Dongz committed
189
if __name__ == "__main__":
helloyongyang's avatar
helloyongyang committed
190
    weight = torch.randn(4096, 4096, dtype=torch.bfloat16).cuda()
Dongz's avatar
Dongz committed
191
    quantizer = IntegerQuantizer(4, False, "per_group", group_size=128)
helloyongyang's avatar
helloyongyang committed
192
    q_weight = quantizer.fake_quant_tensor(weight)
root's avatar
root committed
193
194
195
    logger.info(weight)
    logger.info(q_weight)
    logger.info(f"cosine = {torch.cosine_similarity(weight.view(1, -1).to(torch.float64), q_weight.view(1, -1).to(torch.float64))}")
Dongz's avatar
Dongz committed
196

helloyongyang's avatar
helloyongyang committed
197
    realq_weight, scales, zeros = quantizer.real_quant_tensor(weight)
root's avatar
root committed
198
199
200
    logger.info(f"realq_weight = {realq_weight}, {realq_weight.shape}")
    logger.info(f"scales = {scales}, {scales.shape}")
    logger.info(f"zeros = {zeros}, {zeros.shape}")
helloyongyang's avatar
helloyongyang committed
201
202

    weight = torch.randn(8192, 4096, dtype=torch.bfloat16).cuda()
Dongz's avatar
Dongz committed
203
    quantizer = FloatQuantizer("e4m3", True, "per_channel")
helloyongyang's avatar
helloyongyang committed
204
    q_weight = quantizer.fake_quant_tensor(weight)
root's avatar
root committed
205
206
207
    logger.info(weight)
    logger.info(q_weight)
    logger.info(f"cosine = {torch.cosine_similarity(weight.view(1, -1).to(torch.float64), q_weight.view(1, -1).to(torch.float64))}")
helloyongyang's avatar
helloyongyang committed
208
209

    realq_weight, scales, zeros = quantizer.real_quant_tensor(weight)
root's avatar
root committed
210
211
212
    logger.info(f"realq_weight = {realq_weight}, {realq_weight.shape}")
    logger.info(f"scales = {scales}, {scales.shape}")
    logger.info(f"zeros = {zeros}")
213
214
215
216
217
218
219

    input_tensor = torch.randn(4096, 4096, dtype=torch.bfloat16).cuda()
    input_tensor_fp8, input_tensor_scale = quant_fp8_vllm(input_tensor)
    dequant_tensor = dequant_fp8_vllm(input_tensor_fp8, input_tensor_scale, input_tensor.dtype)
    logger.info(input_tensor)
    logger.info(dequant_tensor)
    logger.info(f"cosine vllm fp8 quant/dequant = {torch.cosine_similarity(input_tensor.view(1, -1).to(torch.float64), dequant_tensor.view(1, -1).to(torch.float64))}")