input_info.py 6.61 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import inspect
from dataclasses import dataclass, field


@dataclass
class T2VInputInfo:
    seed: int = field(default_factory=int)
    prompt: str = field(default_factory=str)
    prompt_enhanced: str = field(default_factory=str)
    negative_prompt: str = field(default_factory=str)
    save_result_path: str = field(default_factory=str)
    return_result_tensor: bool = field(default_factory=lambda: False)
    # shape related
    latent_shape: list = field(default_factory=list)
    target_shape: int = field(default_factory=int)


@dataclass
class I2VInputInfo:
    seed: int = field(default_factory=int)
    prompt: str = field(default_factory=str)
    prompt_enhanced: str = field(default_factory=str)
    negative_prompt: str = field(default_factory=str)
    image_path: str = field(default_factory=str)
    save_result_path: str = field(default_factory=str)
    return_result_tensor: bool = field(default_factory=lambda: False)
    # shape related
    original_shape: list = field(default_factory=list)
    resized_shape: list = field(default_factory=list)
    latent_shape: list = field(default_factory=list)
    target_shape: int = field(default_factory=int)


@dataclass
class Flf2vInputInfo:
    seed: int = field(default_factory=int)
    prompt: str = field(default_factory=str)
    prompt_enhanced: str = field(default_factory=str)
    negative_prompt: str = field(default_factory=str)
    image_path: str = field(default_factory=str)
    last_frame_path: str = field(default_factory=str)
    save_result_path: str = field(default_factory=str)
    return_result_tensor: bool = field(default_factory=lambda: False)
    # shape related
    original_shape: list = field(default_factory=list)
    resized_shape: list = field(default_factory=list)
    latent_shape: list = field(default_factory=list)
    target_shape: int = field(default_factory=int)


# Need Check
@dataclass
class VaceInputInfo:
    seed: int = field(default_factory=int)
    prompt: str = field(default_factory=str)
    prompt_enhanced: str = field(default_factory=str)
    negative_prompt: str = field(default_factory=str)
    src_ref_images: str = field(default_factory=str)
    src_video: str = field(default_factory=str)
    src_mask: str = field(default_factory=str)
    save_result_path: str = field(default_factory=str)
    return_result_tensor: bool = field(default_factory=lambda: False)
    # shape related
    original_shape: list = field(default_factory=list)
    resized_shape: list = field(default_factory=list)
    latent_shape: list = field(default_factory=list)
    target_shape: int = field(default_factory=int)


@dataclass
class S2VInputInfo:
    seed: int = field(default_factory=int)
    prompt: str = field(default_factory=str)
    prompt_enhanced: str = field(default_factory=str)
    negative_prompt: str = field(default_factory=str)
    image_path: str = field(default_factory=str)
    audio_path: str = field(default_factory=str)
    audio_num: int = field(default_factory=int)
    with_mask: bool = field(default_factory=lambda: False)
    save_result_path: str = field(default_factory=str)
    return_result_tensor: bool = field(default_factory=lambda: False)
    # shape related
    original_shape: list = field(default_factory=list)
    resized_shape: list = field(default_factory=list)
    latent_shape: list = field(default_factory=list)
    target_shape: int = field(default_factory=int)


# Need Check
@dataclass
class AnimateInputInfo:
    seed: int = field(default_factory=int)
    prompt: str = field(default_factory=str)
    prompt_enhanced: str = field(default_factory=str)
    negative_prompt: str = field(default_factory=str)
    image_path: str = field(default_factory=str)
    save_result_path: str = field(default_factory=str)
    return_result_tensor: bool = field(default_factory=lambda: False)
    # shape related
    original_shape: list = field(default_factory=list)
    resized_shape: list = field(default_factory=list)
    latent_shape: list = field(default_factory=list)
    target_shape: int = field(default_factory=int)


def set_input_info(args):
    if args.task == "t2v":
        input_info = T2VInputInfo(
            seed=args.seed,
            prompt=args.prompt,
            negative_prompt=args.negative_prompt,
            save_result_path=args.save_result_path,
            return_result_tensor=args.return_result_tensor,
        )
    elif args.task == "i2v":
        input_info = I2VInputInfo(
            seed=args.seed,
            prompt=args.prompt,
            negative_prompt=args.negative_prompt,
            image_path=args.image_path,
            save_result_path=args.save_result_path,
            return_result_tensor=args.return_result_tensor,
        )
    elif args.task == "flf2v":
        input_info = Flf2vInputInfo(
            seed=args.seed,
            prompt=args.prompt,
            negative_prompt=args.negative_prompt,
            image_path=args.image_path,
            last_frame_path=args.last_frame_path,
            save_result_path=args.save_result_path,
            return_result_tensor=args.return_result_tensor,
        )
    elif args.task == "vace":
        input_info = VaceInputInfo(
            seed=args.seed,
            prompt=args.prompt,
            negative_prompt=args.negative_prompt,
            src_ref_images=args.src_ref_images,
            src_video=args.src_video,
            src_mask=args.src_mask,
            save_result_path=args.save_result_path,
            return_result_tensor=args.return_result_tensor,
        )
    elif args.task == "s2v":
        input_info = S2VInputInfo(
            seed=args.seed,
            prompt=args.prompt,
            negative_prompt=args.negative_prompt,
            image_path=args.image_path,
            audio_path=args.audio_path,
            save_result_path=args.save_result_path,
            return_result_tensor=args.return_result_tensor,
        )
    elif args.task == "animate":
        input_info = AnimateInputInfo(
            seed=args.seed,
            prompt=args.prompt,
            negative_prompt=args.negative_prompt,
            image_path=args.image_path,
            save_result_path=args.save_result_path,
            return_result_tensor=args.return_result_tensor,
        )
    else:
        raise ValueError(f"Unsupported task: {args.task}")
    return input_info


def get_all_input_info_keys():
    all_keys = set()

    current_module = inspect.currentframe().f_globals

    for name, obj in current_module.items():
        if inspect.isclass(obj) and name.endswith("InputInfo") and hasattr(obj, "__dataclass_fields__"):
            all_keys.update(obj.__dataclass_fields__.keys())

    return all_keys


# 创建包含所有InputInfo字段的集合
ALL_INPUT_INFO_KEYS = get_all_input_info_keys()