gradio_demo.py 38.6 KB
Newer Older
gushiqiao's avatar
gushiqiao committed
1
2
3
4
5
6
7
8
9
10
11
import os
import gradio as gr
import asyncio
import argparse
import json
import torch
import gc
from easydict import EasyDict
from datetime import datetime
from loguru import logger

gushiqiao's avatar
gushiqiao committed
12
13
import importlib.util
import psutil
gushiqiao's avatar
gushiqiao committed
14
15
16
17
18
19
20
21
22
23
24
25


logger.add(
    "inference_logs.log",
    rotation="100 MB",
    encoding="utf-8",
    enqueue=True,
    backtrace=True,
    diagnose=True,
)


gushiqiao's avatar
gushiqiao committed
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
def is_module_installed(module_name):
    try:
        spec = importlib.util.find_spec(module_name)
        return spec is not None
    except ModuleNotFoundError:
        return False


def get_available_quant_ops():
    available_ops = []

    vllm_installed = is_module_installed("vllm")
    if vllm_installed:
        available_ops.append(("vllm", True))
    else:
        available_ops.append(("vllm", False))

    sgl_installed = is_module_installed("sgl_kernel")
    if sgl_installed:
        available_ops.append(("sgl", True))
    else:
        available_ops.append(("sgl", False))

    q8f_installed = is_module_installed("q8_kernels")
    if q8f_installed:
        available_ops.append(("q8f", True))
    else:
        available_ops.append(("q8f", False))

    return available_ops


def get_available_attn_ops():
    available_ops = []

    vllm_installed = is_module_installed("flash_attn")
    if vllm_installed:
        available_ops.append(("flash_attn2", True))
    else:
        available_ops.append(("flash_attn2", False))

    sgl_installed = is_module_installed("flash_attn_interface")
    if sgl_installed:
        available_ops.append(("flash_attn3", True))
    else:
        available_ops.append(("flash_attn3", False))

    q8f_installed = is_module_installed("sageattention")
    if q8f_installed:
        available_ops.append(("sage_attn2", True))
    else:
        available_ops.append(("sage_attn2", False))

    return available_ops


def get_gpu_memory(gpu_idx=0):
    if not torch.cuda.is_available():
        return 0
    try:
        with torch.cuda.device(gpu_idx):
            memory_info = torch.cuda.mem_get_info()
            total_memory = memory_info[1] / (1024**3)  # Convert bytes to GB
            return total_memory
    except Exception as e:
        logger.warning(f"Failed to get GPU memory: {e}")
        return 0


def get_cpu_memory():
    available_bytes = psutil.virtual_memory().available
    return available_bytes / 1024**3
gushiqiao's avatar
gushiqiao committed
98
99
100
101
102
103
104
105


def generate_unique_filename(base_dir="./saved_videos"):
    os.makedirs(base_dir, exist_ok=True)
    timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
    return os.path.join(base_dir, f"{model_cls}_{timestamp}.mp4")


gushiqiao's avatar
gushiqiao committed
106
107
108
109
110
111
112
113
def is_fp8_supported_gpu():
    if not torch.cuda.is_available():
        return False
    compute_capability = torch.cuda.get_device_capability(0)
    major, minor = compute_capability
    return (major == 8 and minor == 9) or (major >= 9)


gushiqiao's avatar
gushiqiao committed
114
115
116
117
118
119
def update_precision_mode(dit_quant_scheme):
    if dit_quant_scheme != "bf16":
        return "bf16"
    return "fp32"


gushiqiao's avatar
gushiqiao committed
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
global_runner = None
current_config = None

available_quant_ops = get_available_quant_ops()
quant_op_choices = []
for op_name, is_installed in available_quant_ops:
    status_text = "✅ Installed" if is_installed else "❌ Not Installed"
    display_text = f"{op_name} ({status_text})"
    quant_op_choices.append((op_name, display_text))

available_attn_ops = get_available_attn_ops()
attn_op_choices = []
for op_name, is_installed in available_attn_ops:
    status_text = "✅ Installed" if is_installed else "❌ Not Installed"
    display_text = f"{op_name} ({status_text})"
    attn_op_choices.append((op_name, display_text))


gushiqiao's avatar
gushiqiao committed
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
def run_inference(
    model_type,
    task,
    prompt,
    negative_prompt,
    image_path,
    save_video_path,
    torch_compile,
    infer_steps,
    num_frames,
    resolution,
    seed,
    sample_shift,
    enable_teacache,
    teacache_thresh,
gushiqiao's avatar
gushiqiao committed
153
    use_ret_steps,
gushiqiao's avatar
gushiqiao committed
154
155
156
157
158
159
160
161
162
163
164
165
    enable_cfg,
    cfg_scale,
    dit_quant_scheme,
    t5_quant_scheme,
    clip_quant_scheme,
    fps,
    use_tiny_vae,
    use_tiling_vae,
    lazy_load,
    precision_mode,
    cpu_offload,
    offload_granularity,
gushiqiao's avatar
gushiqiao committed
166
    offload_ratio,
gushiqiao's avatar
gushiqiao committed
167
168
169
170
    t5_offload_granularity,
    attention_type,
    quant_op,
    rotary_chunk,
gushiqiao's avatar
gushiqiao committed
171
    rotary_chunk_size,
gushiqiao's avatar
gushiqiao committed
172
173
    clean_cuda_cache,
):
gushiqiao's avatar
gushiqiao committed
174
175
176
    quant_op = quant_op.split("(")[0].strip()
    attention_type = attention_type.split("(")[0].strip()

gushiqiao's avatar
gushiqiao committed
177
178
179
180
181
182
    global global_runner, current_config, model_path

    if os.path.exists(os.path.join(model_path, "config.json")):
        with open(os.path.join(model_path, "config.json"), "r") as f:
            model_config = json.load(f)

gushiqiao's avatar
gushiqiao committed
183
    if task == "Image to Video":
gushiqiao's avatar
gushiqiao committed
184
        task = "i2v"
gushiqiao's avatar
gushiqiao committed
185
186
    elif task == "Text to Video":
        task = "t2v"
gushiqiao's avatar
gushiqiao committed
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

    if task == "t2v":
        if model_type == "Wan2.1 1.3B":
            # 1.3B
            coefficient = [
                [
                    -5.21862437e04,
                    9.23041404e03,
                    -5.28275948e02,
                    1.36987616e01,
                    -4.99875664e-02,
                ],
                [
                    2.39676752e03,
                    -1.31110545e03,
                    2.01331979e02,
                    -8.29855975e00,
                    1.37887774e-01,
                ],
            ]
        else:
            # 14B
            coefficient = [
                [
                    -3.03318725e05,
                    4.90537029e04,
                    -2.65530556e03,
                    5.87365115e01,
                    -3.15583525e-01,
                ],
                [
                    -5784.54975374,
                    5449.50911966,
                    -1811.16591783,
                    256.27178429,
                    -13.02252404,
                ],
            ]
    elif task == "i2v":
        if resolution in [
            "1280x720",
            "720x1280",
            "1280x544",
            "544x1280",
            "1104x832",
            "832x1104",
            "960x960",
        ]:
            # 720p
            coefficient = [
                [
                    8.10705460e03,
                    2.13393892e03,
                    -3.72934672e02,
                    1.66203073e01,
                    -4.17769401e-02,
                ],
                [-114.36346466, 65.26524496, -18.82220707, 4.91518089, -0.23412683],
            ]
        else:
            # 480p
            coefficient = [
                [
                    2.57151496e05,
                    -3.54229917e04,
                    1.40286849e03,
                    -1.35890334e01,
                    1.32517977e-01,
                ],
                [
                    -3.02331670e02,
                    2.23948934e02,
                    -5.25463970e01,
                    5.87348440e00,
                    -2.01973289e-01,
                ],
            ]

    save_video_path = generate_unique_filename()

    is_dit_quant = dit_quant_scheme != "bf16"
    is_t5_quant = t5_quant_scheme != "bf16"
    if is_t5_quant:
gushiqiao's avatar
gushiqiao committed
270
271
        t5_path = os.path.join(model_path, t5_quant_scheme)
        t5_quant_ckpt = os.path.join(t5_path, f"models_t5_umt5-xxl-enc-{t5_quant_scheme}.pth")
gushiqiao's avatar
gushiqiao committed
272
273
274
    else:
        t5_quant_ckpt = None

gushiqiao's avatar
gushiqiao committed
275
    is_clip_quant = clip_quant_scheme != "fp16"
gushiqiao's avatar
gushiqiao committed
276
    if is_clip_quant:
gushiqiao's avatar
gushiqiao committed
277
278
        clip_path = os.path.join(model_path, clip_quant_scheme)
        clip_quant_ckpt = os.path.join(clip_path, f"clip-{clip_quant_scheme}.pth")
gushiqiao's avatar
gushiqiao committed
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
    else:
        clip_quant_ckpt = None

    needs_reinit = lazy_load or global_runner is None or current_config is None or current_config.get("model_path") != model_path

    if torch_compile:
        os.environ["ENABLE_GRAPH_MODE"] = "true"
    else:
        os.environ["ENABLE_GRAPH_MODE"] = "false"
    if precision_mode == "bf16":
        os.environ["DTYPE"] = "BF16"
    else:
        os.environ.pop("DTYPE", None)

    if is_dit_quant:
        if quant_op == "vllm":
            mm_type = f"W-{dit_quant_scheme}-channel-sym-A-{dit_quant_scheme}-channel-sym-dynamic-Vllm"
        elif quant_op == "sgl":
            mm_type = f"W-{dit_quant_scheme}-channel-sym-A-{dit_quant_scheme}-channel-sym-dynamic-Sgl"
        elif quant_op == "q8f":
            mm_type = f"W-{dit_quant_scheme}-channel-sym-A-{dit_quant_scheme}-channel-sym-dynamic-Q8F"
gushiqiao's avatar
gushiqiao committed
300
301

        dit_quantized_ckpt = os.path.join(model_path, dit_quant_scheme)
gushiqiao's avatar
gushiqiao committed
302
303
304
        if os.path.exists(os.path.join(dit_quantized_ckpt, "config.json")):
            with open(os.path.join(dit_quantized_ckpt, "config.json"), "r") as f:
                quant_model_config = json.load(f)
gushiqiao's avatar
gushiqiao committed
305
306
    else:
        mm_type = "Default"
gushiqiao's avatar
gushiqiao committed
307
        dit_quantized_ckpt = None
gushiqiao's avatar
gushiqiao committed
308
        quant_model_config = {}
gushiqiao's avatar
gushiqiao committed
309
310
311
312
313
314

    config = {
        "infer_steps": infer_steps,
        "target_video_length": num_frames,
        "target_width": int(resolution.split("x")[0]),
        "target_height": int(resolution.split("x")[1]),
gushiqiao's avatar
gushiqiao committed
315
316
317
        "self_attn_1_type": attention_type,
        "cross_attn_1_type": attention_type,
        "cross_attn_2_type": attention_type,
gushiqiao's avatar
gushiqiao committed
318
319
320
321
322
323
        "seed": seed,
        "enable_cfg": enable_cfg,
        "sample_guide_scale": cfg_scale,
        "sample_shift": sample_shift,
        "cpu_offload": cpu_offload,
        "offload_granularity": offload_granularity,
gushiqiao's avatar
gushiqiao committed
324
        "offload_ratio": offload_ratio,
gushiqiao's avatar
gushiqiao committed
325
        "t5_offload_granularity": t5_offload_granularity,
gushiqiao's avatar
gushiqiao committed
326
        "dit_quantized_ckpt": dit_quantized_ckpt,
gushiqiao's avatar
gushiqiao committed
327
328
329
330
331
        "mm_config": {
            "mm_type": mm_type,
        },
        "fps": fps,
        "feature_caching": "Tea" if enable_teacache else "NoCaching",
gushiqiao's avatar
gushiqiao committed
332
333
        "coefficients": coefficient[0] if use_ret_steps else coefficient[1],
        "use_ret_steps": use_ret_steps,
gushiqiao's avatar
gushiqiao committed
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
        "teacache_thresh": teacache_thresh,
        "t5_quantized": is_t5_quant,
        "t5_quantized_ckpt": t5_quant_ckpt,
        "t5_quant_scheme": t5_quant_scheme,
        "clip_quantized": is_clip_quant,
        "clip_quantized_ckpt": clip_quant_ckpt,
        "clip_quant_scheme": clip_quant_scheme,
        "use_tiling_vae": use_tiling_vae,
        "tiny_vae": use_tiny_vae,
        "tiny_vae_path": (os.path.join(model_path, "taew2_1.pth") if use_tiny_vae else None),
        "lazy_load": lazy_load,
        "do_mm_calib": False,
        "parallel_attn_type": None,
        "parallel_vae": False,
        "max_area": False,
        "vae_stride": (4, 8, 8),
        "patch_size": (1, 2, 2),
        "lora_path": None,
        "strength_model": 1.0,
        "use_prompt_enhancer": False,
        "text_len": 512,
        "rotary_chunk": rotary_chunk,
gushiqiao's avatar
gushiqiao committed
356
        "rotary_chunk_size": rotary_chunk_size,
gushiqiao's avatar
gushiqiao committed
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
        "clean_cuda_cache": clean_cuda_cache,
    }

    args = argparse.Namespace(
        model_cls=model_cls,
        task=task,
        model_path=model_path,
        prompt_enhancer=None,
        prompt=prompt,
        negative_prompt=negative_prompt,
        image_path=image_path,
        save_video_path=save_video_path,
    )

    config.update({k: v for k, v in vars(args).items()})
    config = EasyDict(config)
    config["mode"] = "infer"
    config.update(model_config)
gushiqiao's avatar
gushiqiao committed
375
    config.update(quant_model_config)
gushiqiao's avatar
gushiqiao committed
376
377
378
379

    logger.info(f"Using model: {model_path}")
    logger.info(f"Inference configuration:\n{json.dumps(config, indent=4, ensure_ascii=False)}")

gushiqiao's avatar
gushiqiao committed
380
    # Initialize or reuse the runner
gushiqiao's avatar
gushiqiao committed
381
382
383
384
385
386
387
    runner = global_runner
    if needs_reinit:
        if runner is not None:
            del runner
            torch.cuda.empty_cache()
            gc.collect()

gushiqiao's avatar
gushiqiao committed
388
389
        from lightx2v.infer import init_runner  # noqa

gushiqiao's avatar
gushiqiao committed
390
391
392
393
394
        runner = init_runner(config)
        current_config = config

        if not lazy_load:
            global_runner = runner
gushiqiao's avatar
gushiqiao committed
395
396
    else:
        runner.config = config
gushiqiao's avatar
gushiqiao committed
397
398
399
400
401
402
403
404
405
406
407

    asyncio.run(runner.run_pipeline())

    if lazy_load:
        del runner
        torch.cuda.empty_cache()
        gc.collect()

    return save_video_path


gushiqiao's avatar
gushiqiao committed
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
def auto_configure(enable_auto_config, model_type, resolution):
    default_config = {
        "torch_compile_val": False,
        "lazy_load_val": False,
        "rotary_chunk_val": False,
        "rotary_chunk_size_val": 100,
        "clean_cuda_cache_val": False,
        "cpu_offload_val": False,
        "offload_granularity_val": "block",
        "offload_ratio_val": 1,
        "t5_offload_granularity_val": "model",
        "attention_type_val": attn_op_choices[0][1],
        "quant_op_val": quant_op_choices[0][1],
        "dit_quant_scheme_val": "bf16",
        "t5_quant_scheme_val": "bf16",
        "clip_quant_scheme_val": "fp16",
        "precision_mode_val": "fp32",
        "use_tiny_vae_val": False,
        "use_tiling_vae_val": False,
        "enable_teacache_val": False,
        "teacache_thresh_val": 0.26,
        "use_ret_steps_val": False,
    }
gushiqiao's avatar
gushiqiao committed
431

gushiqiao's avatar
gushiqiao committed
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
    if not enable_auto_config:
        return tuple(gr.update(value=default_config[key]) for key in default_config)

    gpu_memory = round(get_gpu_memory())
    cpu_memory = round(get_cpu_memory())

    if is_fp8_supported_gpu():
        quant_type = "fp8"
    else:
        quant_type = "int8"

    attn_priority = ["sage_attn2", "flash_attn3", "flash_attn2"]
    quant_op_priority = ["sgl", "vllm", "q8f"]

    for op in attn_priority:
        if dict(available_attn_ops).get(op):
            default_config["attention_type_val"] = dict(attn_op_choices)[op]
            break

    for op in quant_op_priority:
        if dict(available_quant_ops).get(op):
            default_config["quant_op_val"] = dict(quant_op_choices)[op]
            break

    if resolution in [
        "1280x720",
        "720x1280",
        "1280x544",
        "544x1280",
        "1104x832",
        "832x1104",
        "960x960",
    ]:
        res = "720p"
    elif resolution in [
        "960x544",
        "544x960",
    ]:
        res = "540p"
    else:
        res = "480p"

    if model_type in ["Wan2.1 14B"]:
        is_14b = True
    else:
        is_14b = False

    if res == "720p" and is_14b:
        gpu_rules = [
            (80, {}),
            (48, {"cpu_offload_val": True, "offload_ratio_val": 0.5}),
            (40, {"cpu_offload_val": True, "offload_ratio_val": 0.8}),
            (32, {"cpu_offload_val": True, "offload_ratio_val": 1}),
            (
                24,
                {
                    "cpu_offload_val": True,
                    "offload_ratio_val": 1,
                    "t5_offload_granularity_val": "block",
                    "precision_mode_val": "bf16",
                    "use_tiling_vae_val": True,
                },
            ),
            (
                16,
                {
                    "cpu_offload_val": True,
                    "offload_ratio_val": 1,
                    "t5_offload_granularity_val": "block",
                    "precision_mode_val": "bf16",
                    "use_tiling_vae_val": True,
                    "offload_granularity_val": "phase",
                    "rotary_chunk_val": True,
                    "rotary_chunk_size_val": 100,
                },
            ),
            (
                12,
                {
                    "cpu_offload_val": True,
                    "offload_ratio_val": 1,
                    "t5_offload_granularity_val": "block",
                    "precision_mode_val": "bf16",
                    "use_tiling_vae_val": True,
                    "offload_granularity_val": "phase",
                    "rotary_chunk_val": True,
                    "rotary_chunk_size_val": 100,
                    "clean_cuda_cache_val": True,
                },
            ),
            (
                8,
                {
                    "cpu_offload_val": True,
                    "offload_ratio_val": 1,
                    "t5_offload_granularity_val": "block",
                    "precision_mode_val": "bf16",
                    "use_tiling_vae_val": True,
                    "offload_granularity_val": "phase",
                    "rotary_chunk_val": True,
                    "rotary_chunk_size_val": 100,
                    "clean_cuda_cache_val": True,
                    "t5_quant_scheme_val": quant_type,
                    "clip_quant_scheme_val": quant_type,
                    "dit_quant_scheme_val": quant_type,
                    "lazy_load_val": True,
                },
            ),
        ]

    elif is_14b:
        gpu_rules = [
            (80, {}),
            (48, {"cpu_offload_val": True, "offload_ratio_val": 0.2}),
            (40, {"cpu_offload_val": True, "offload_ratio_val": 0.5}),
            (24, {"cpu_offload_val": True, "offload_ratio_val": 0.8}),
            (
                16,
                {
                    "cpu_offload_val": True,
                    "offload_ratio_val": 1,
                    "t5_offload_granularity_val": "block",
                    "precision_mode_val": "bf16",
                    "use_tiling_vae_val": True,
                    "offload_granularity_val": "block",
                },
            ),
            (
                8,
                (
                    {
                        "cpu_offload_val": True,
                        "offload_ratio_val": 1,
                        "t5_offload_granularity_val": "block",
                        "precision_mode_val": "bf16",
                        "use_tiling_vae_val": True,
                        "offload_granularity_val": "phase",
                        "t5_quant_scheme_val": quant_type,
                        "clip_quant_scheme_val": quant_type,
                        "dit_quant_scheme_val": quant_type,
                        "lazy_load_val": True,
                        "rotary_chunk_val": True,
                        "rotary_chunk_size_val": 10000,
                    }
                    if res == "540p"
                    else {
                        "cpu_offload_val": True,
                        "offload_ratio_val": 1,
                        "t5_offload_granularity_val": "block",
                        "precision_mode_val": "bf16",
                        "use_tiling_vae_val": True,
                        "offload_granularity_val": "phase",
                        "t5_quant_scheme_val": quant_type,
                        "clip_quant_scheme_val": quant_type,
                        "dit_quant_scheme_val": quant_type,
                        "lazy_load_val": True,
                    }
                ),
            ),
        ]
gushiqiao's avatar
gushiqiao committed
592

gushiqiao's avatar
gushiqiao committed
593
594
595
596
597
598
599
    if is_14b:
        cpu_rules = [
            (128, {}),
            (64, {"dit_quant_scheme_val": quant_type}),
            (32, {"dit_quant_scheme_val": quant_type, "lazy_load_val": True}),
            (
                16,
gushiqiao's avatar
gushiqiao committed
600
                {"dit_quant_scheme_val": quant_type, "t5_quant_scheme_val": quant_type, "clip_quant_scheme_val": quant_type, "lazy_load_val": True},
gushiqiao's avatar
gushiqiao committed
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
            ),
        ]

    for threshold, updates in gpu_rules:
        if gpu_memory >= threshold:
            default_config.update(updates)
            break

    for threshold, updates in cpu_rules:
        if cpu_memory >= threshold:
            default_config.update(updates)
            break

    return tuple(gr.update(value=default_config[key]) for key in default_config)


def main():
gushiqiao's avatar
gushiqiao committed
618
    def update_model_type(task_type):
gushiqiao's avatar
gushiqiao committed
619
        if task_type == "Image to Video":
gushiqiao's avatar
gushiqiao committed
620
            return gr.update(choices=["Wan2.1 14B"], value="Wan2.1 14B")
gushiqiao's avatar
gushiqiao committed
621
        elif task_type == "Text to Video":
gushiqiao's avatar
gushiqiao committed
622
623
624
            return gr.update(choices=["Wan2.1 14B", "Wan2.1 1.3B"], value="Wan2.1 14B")

    def toggle_image_input(task):
gushiqiao's avatar
gushiqiao committed
625
        return gr.update(visible=(task == "Image to Video"))
gushiqiao's avatar
gushiqiao committed
626
627

    with gr.Blocks(
gushiqiao's avatar
gushiqiao committed
628
        title="Lightx2v (Lightweight Video Inference and Generation Engine)",
gushiqiao's avatar
gushiqiao committed
629
630
631
632
633
634
635
636
637
        css="""
        .main-content { max-width: 1400px; margin: auto; }
        .output-video { max-height: 650px; }
        .warning { color: #ff6b6b; font-weight: bold; }
        .advanced-options { background: #f9f9ff; border-radius: 10px; padding: 15px; }
        .tab-button { font-size: 16px; padding: 10px 20px; }
    """,
    ) as demo:
        gr.Markdown(f"# 🎬 {model_cls} Video Generator")
gushiqiao's avatar
gushiqiao committed
638
        gr.Markdown(f"### Using Model: {model_path}")
gushiqiao's avatar
gushiqiao committed
639
640
641
642
643
644
645
646
647
648

        with gr.Tabs() as tabs:
            with gr.Tab("Basic Settings", id=1):
                with gr.Row():
                    with gr.Column(scale=4):
                        with gr.Group():
                            gr.Markdown("## 📥 Input Parameters")

                            with gr.Row():
                                task = gr.Dropdown(
gushiqiao's avatar
gushiqiao committed
649
650
                                    choices=["Image to Video", "Text to Video"],
                                    value="Image to Video",
gushiqiao's avatar
gushiqiao committed
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
                                    label="Task Type",
                                )
                                model_type = gr.Dropdown(
                                    choices=["Wan2.1 14B"],
                                    value="Wan2.1 14B",
                                    label="Model Type",
                                )
                                task.change(
                                    fn=update_model_type,
                                    inputs=task,
                                    outputs=model_type,
                                )

                            with gr.Row():
                                image_path = gr.Image(
                                    label="Input Image",
                                    type="filepath",
                                    height=300,
                                    interactive=True,
gushiqiao's avatar
gushiqiao committed
670
                                    visible=True,  # Initially visible
gushiqiao's avatar
gushiqiao committed
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
                                )

                                task.change(
                                    fn=toggle_image_input,
                                    inputs=task,
                                    outputs=image_path,
                                )

                            with gr.Row():
                                with gr.Column():
                                    prompt = gr.Textbox(
                                        label="Prompt",
                                        lines=3,
                                        placeholder="Describe the video content...",
                                        max_lines=5,
                                    )
                                with gr.Column():
                                    negative_prompt = gr.Textbox(
                                        label="Negative Prompt",
                                        lines=3,
gushiqiao's avatar
gushiqiao committed
691
                                        placeholder="What you don't want to appear in the video...",
gushiqiao's avatar
gushiqiao committed
692
                                        max_lines=5,
gushiqiao's avatar
gushiqiao committed
693
                                        value="镜头晃动,色调艳丽,过曝,静态,细节模糊不清,字幕,风格,作品,画作,画面,静止,整体发灰,最差质量,低质量,JPEG压缩残留,丑陋的,残缺的,多余的手指,画得不好的手部,画得不好的脸部,畸形的,毁容的,形态畸形的肢体,手指融合,静止不动的画面,杂乱的背景,三条腿,背景人很多,倒着走",
gushiqiao's avatar
gushiqiao committed
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
                                    )
                                with gr.Column():
                                    resolution = gr.Dropdown(
                                        choices=[
                                            # 720p
                                            ("1280x720 (16:9, 720p)", "1280x720"),
                                            ("720x1280 (9:16, 720p)", "720x1280"),
                                            ("1280x544 (21:9, 720p)", "1280x544"),
                                            ("544x1280 (9:21, 720p)", "544x1280"),
                                            ("1104x832 (4:3, 720p)", "1104x832"),
                                            ("832x1104 (3:4, 720p)", "832x1104"),
                                            ("960x960 (1:1, 720p)", "960x960"),
                                            # 480p
                                            ("960x544 (16:9, 540p)", "960x544"),
                                            ("544x960 (9:16, 540p)", "544x960"),
                                            ("832x480 (16:9, 480p)", "832x480"),
                                            ("480x832 (9:16, 480p)", "480x832"),
                                            ("832x624 (4:3, 480p)", "832x624"),
                                            ("624x832 (3:4, 480p)", "624x832"),
                                            ("720x720 (1:1, 480p)", "720x720"),
                                            ("512x512 (1:1, 480p)", "512x512"),
                                        ],
gushiqiao's avatar
gushiqiao committed
716
717
                                        value="832x480",
                                        label="Maximum Resolution",
gushiqiao's avatar
gushiqiao committed
718
719
720
721
722
723
724
725
726
727
728
729
730
731
                                    )
                                with gr.Column():
                                    seed = gr.Slider(
                                        label="Random Seed",
                                        minimum=-10000000,
                                        maximum=10000000,
                                        step=1,
                                        value=42,
                                    )
                                    infer_steps = gr.Slider(
                                        label="Inference Steps",
                                        minimum=1,
                                        maximum=100,
                                        step=1,
gushiqiao's avatar
gushiqiao committed
732
733
                                        value=40,
                                        info="Number of inference steps for video generation. Increasing steps may improve quality but reduce speed.",
gushiqiao's avatar
gushiqiao committed
734
735
                                    )

gushiqiao's avatar
gushiqiao committed
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
                            enable_cfg = gr.Checkbox(
                                label="Enable Classifier-Free Guidance",
                                value=True,
                                info="Enable classifier-free guidance to control prompt strength",
                            )
                            cfg_scale = gr.Slider(
                                label="CFG Scale Factor",
                                minimum=1,
                                maximum=10,
                                step=1,
                                value=5,
                                info="Controls the influence strength of the prompt. Higher values give more influence to the prompt.",
                            )
                            sample_shift = gr.Slider(
                                label="Distribution Shift",
                                value=5,
                                minimum=0,
                                maximum=10,
                                step=1,
                                info="Controls the degree of distribution shift for samples. Larger values indicate more significant shifts.",
gushiqiao's avatar
gushiqiao committed
756
757
                            )

gushiqiao's avatar
gushiqiao committed
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
                            fps = gr.Slider(
                                label="Frames Per Second (FPS)",
                                minimum=8,
                                maximum=30,
                                step=1,
                                value=16,
                                info="Frames per second of the video. Higher FPS results in smoother videos.",
                            )
                            num_frames = gr.Slider(
                                label="Total Frames",
                                minimum=16,
                                maximum=120,
                                step=1,
                                value=81,
                                info="Total number of frames in the video. More frames result in longer videos.",
                            )
gushiqiao's avatar
gushiqiao committed
774

gushiqiao's avatar
gushiqiao committed
775
776
777
778
779
                        save_video_path = gr.Textbox(
                            label="Output Video Path",
                            value=generate_unique_filename(),
                            info="Must include .mp4 extension. If left blank or using the default value, a unique filename will be automatically generated.",
                        )
gushiqiao's avatar
gushiqiao committed
780
781
782
783
784
785
786
787
788
789
                    with gr.Column(scale=6):
                        gr.Markdown("## 📤 Generated Video")
                        output_video = gr.Video(
                            label="Result",
                            height=624,
                            width=360,
                            autoplay=True,
                            elem_classes=["output-video"],
                        )

gushiqiao's avatar
gushiqiao committed
790
                        infer_btn = gr.Button("Generate Video", variant="primary", size="lg")
gushiqiao's avatar
gushiqiao committed
791

gushiqiao's avatar
gushiqiao committed
792
793
            with gr.Tab("⚙️ Advanced Options", id=2):
                with gr.Group(elem_classes="advanced-options"):
gushiqiao's avatar
gushiqiao committed
794
                    gr.Markdown("### Auto configuration")
gushiqiao's avatar
gushiqiao committed
795
                    with gr.Row():
gushiqiao's avatar
gushiqiao committed
796
797
                        enable_auto_config = gr.Checkbox(
                            label="Auto configuration",
gushiqiao's avatar
gushiqiao committed
798
                            value=False,
gushiqiao's avatar
gushiqiao committed
799
                            info="Auto-tune optimization settings for your GPU",
gushiqiao's avatar
gushiqiao committed
800
801
                        )

gushiqiao's avatar
gushiqiao committed
802
                    gr.Markdown("### GPU Memory Optimization")
gushiqiao's avatar
gushiqiao committed
803
                    with gr.Row():
gushiqiao's avatar
gushiqiao committed
804
805
                        rotary_chunk = gr.Checkbox(
                            label="Chunked Rotary Position Embedding",
gushiqiao's avatar
gushiqiao committed
806
                            value=False,
gushiqiao's avatar
gushiqiao committed
807
                            info="When enabled, processes rotary position embeddings in chunks to save GPU memory.",
gushiqiao's avatar
gushiqiao committed
808
809
                        )

gushiqiao's avatar
gushiqiao committed
810
811
812
813
814
815
816
                        rotary_chunk_size = gr.Slider(
                            label="Rotary Embedding Chunk Size",
                            value=100,
                            minimum=100,
                            maximum=10000,
                            step=100,
                            info="Controls the chunk size for applying rotary embeddings. Larger values may improve performance but increase memory usage. Only effective if 'rotary_chunk' is checked.",
gushiqiao's avatar
gushiqiao committed
817
818
819
820
821
                        )

                        clean_cuda_cache = gr.Checkbox(
                            label="Clean CUDA Memory Cache",
                            value=False,
gushiqiao's avatar
gushiqiao committed
822
                            info="When enabled, frees up GPU memory promptly but slows down inference.",
gushiqiao's avatar
gushiqiao committed
823
824
                        )

gushiqiao's avatar
gushiqiao committed
825
                    gr.Markdown("### Asynchronous Offloading")
gushiqiao's avatar
gushiqiao committed
826
827
                    with gr.Row():
                        cpu_offload = gr.Checkbox(
gushiqiao's avatar
gushiqiao committed
828
829
830
831
832
833
834
                            label="CPU Offloading",
                            value=False,
                            info="Offload parts of the model computation from GPU to CPU to reduce GPU memory usage",
                        )

                        lazy_load = gr.Checkbox(
                            label="Enable Lazy Loading",
gushiqiao's avatar
gushiqiao committed
835
                            value=False,
gushiqiao's avatar
gushiqiao committed
836
                            info="Lazy load model components during inference. Requires CPU loading and DIT quantization.",
gushiqiao's avatar
gushiqiao committed
837
                        )
gushiqiao's avatar
gushiqiao committed
838

gushiqiao's avatar
gushiqiao committed
839
840
841
                        offload_granularity = gr.Dropdown(
                            label="Dit Offload Granularity",
                            choices=["block", "phase"],
gushiqiao's avatar
gushiqiao committed
842
843
844
845
846
847
848
849
850
851
                            value="phase",
                            info="Sets Dit model offloading granularity: blocks or computational phases",
                        )
                        offload_ratio = gr.Slider(
                            label="Offload ratio for Dit model",
                            minimum=0.0,
                            maximum=1.0,
                            step=0.1,
                            value=1.0,
                            info="Controls how much of the Dit model is offloaded to the CPU",
gushiqiao's avatar
gushiqiao committed
852
853
854
855
                        )
                        t5_offload_granularity = gr.Dropdown(
                            label="T5 Encoder Offload Granularity",
                            choices=["model", "block"],
gushiqiao's avatar
gushiqiao committed
856
857
                            value="model",
                            info="Controls the granularity when offloading the T5 Encoder model to CPU",
gushiqiao's avatar
gushiqiao committed
858
859
860
861
                        )

                    gr.Markdown("### Low-Precision Quantization")
                    with gr.Row():
gushiqiao's avatar
gushiqiao committed
862
863
864
865
866
867
                        torch_compile = gr.Checkbox(
                            label="Torch Compile",
                            value=False,
                            info="Use torch.compile to accelerate the inference process",
                        )

gushiqiao's avatar
gushiqiao committed
868
869
                        attention_type = gr.Dropdown(
                            label="Attention Operator",
gushiqiao's avatar
gushiqiao committed
870
871
872
                            choices=[op[1] for op in attn_op_choices],
                            value=attn_op_choices[0][1],
                            info="Use appropriate attention operators to accelerate inference",
gushiqiao's avatar
gushiqiao committed
873
874
                        )
                        quant_op = gr.Dropdown(
gushiqiao's avatar
gushiqiao committed
875
876
877
878
879
                            label="Quantization Matmul Operator",
                            choices=[op[1] for op in quant_op_choices],
                            value=quant_op_choices[0][1],
                            info="Select the quantization matrix multiplication operator to accelerate inference",
                            interactive=True,
gushiqiao's avatar
gushiqiao committed
880
881
882
883
884
                        )
                        dit_quant_scheme = gr.Dropdown(
                            label="Dit",
                            choices=["fp8", "int8", "bf16"],
                            value="bf16",
gushiqiao's avatar
gushiqiao committed
885
                            info="Quantization precision for the Dit model",
gushiqiao's avatar
gushiqiao committed
886
887
888
889
890
                        )
                        t5_quant_scheme = gr.Dropdown(
                            label="T5 Encoder",
                            choices=["fp8", "int8", "bf16"],
                            value="bf16",
gushiqiao's avatar
gushiqiao committed
891
                            info="Quantization precision for the T5 Encoder model",
gushiqiao's avatar
gushiqiao committed
892
893
894
895
896
                        )
                        clip_quant_scheme = gr.Dropdown(
                            label="Clip Encoder",
                            choices=["fp8", "int8", "fp16"],
                            value="fp16",
gushiqiao's avatar
gushiqiao committed
897
                            info="Quantization precision for the Clip Encoder",
gushiqiao's avatar
gushiqiao committed
898
899
                        )
                        precision_mode = gr.Dropdown(
gushiqiao's avatar
gushiqiao committed
900
                            label="Precision Mode for Sensitive Layers",
gushiqiao's avatar
gushiqiao committed
901
                            choices=["fp32", "bf16"],
gushiqiao's avatar
gushiqiao committed
902
                            value="fp32",
gushiqiao's avatar
gushiqiao committed
903
                            info="Select the numerical precision for critical model components like normalization and embedding layers. FP32 offers higher accuracy, while BF16 improves performance on compatible hardware.",
gushiqiao's avatar
gushiqiao committed
904
905
906
907
908
                        )

                    gr.Markdown("### Variational Autoencoder (VAE)")
                    with gr.Row():
                        use_tiny_vae = gr.Checkbox(
gushiqiao's avatar
gushiqiao committed
909
                            label="Use Tiny VAE",
gushiqiao's avatar
gushiqiao committed
910
911
912
913
                            value=False,
                            info="Use a lightweight VAE model to accelerate the decoding process",
                        )
                        use_tiling_vae = gr.Checkbox(
gushiqiao's avatar
gushiqiao committed
914
                            label="VAE Tiling Inference",
gushiqiao's avatar
gushiqiao committed
915
                            value=False,
gushiqiao's avatar
gushiqiao committed
916
                            info="Use VAE tiling inference to reduce GPU memory usage",
gushiqiao's avatar
gushiqiao committed
917
918
919
920
921
                        )

                    gr.Markdown("### Feature Caching")
                    with gr.Row():
                        enable_teacache = gr.Checkbox(
gushiqiao's avatar
gushiqiao committed
922
                            label="Tea Cache",
gushiqiao's avatar
gushiqiao committed
923
924
925
926
927
928
929
930
                            value=False,
                            info="Cache features during inference to reduce the number of inference steps",
                        )
                        teacache_thresh = gr.Slider(
                            label="Tea Cache Threshold",
                            value=0.26,
                            minimum=0,
                            maximum=1,
gushiqiao's avatar
gushiqiao committed
931
932
933
934
935
936
                            info="Higher acceleration may result in lower quality —— Setting to 0.1 provides ~2.0x acceleration, setting to 0.2 provides ~3.0x acceleration",
                        )
                        use_ret_steps = gr.Checkbox(
                            label="Cache Only Key Steps",
                            value=False,
                            info="When checked, cache is written only at key steps where the scheduler returns results; when unchecked, cache is written at all steps to ensure the highest quality",
gushiqiao's avatar
gushiqiao committed
937
938
                        )

gushiqiao's avatar
gushiqiao committed
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
                enable_auto_config.change(
                    fn=auto_configure,
                    inputs=[enable_auto_config, model_type, resolution],
                    outputs=[
                        torch_compile,
                        lazy_load,
                        rotary_chunk,
                        rotary_chunk_size,
                        clean_cuda_cache,
                        cpu_offload,
                        offload_granularity,
                        offload_ratio,
                        t5_offload_granularity,
                        attention_type,
                        quant_op,
                        dit_quant_scheme,
                        t5_quant_scheme,
                        clip_quant_scheme,
                        precision_mode,
                        use_tiny_vae,
                        use_tiling_vae,
                        enable_teacache,
                        teacache_thresh,
                        use_ret_steps,
                    ],
                )

gushiqiao's avatar
gushiqiao committed
966
967
                dit_quant_scheme.change(fn=update_precision_mode, inputs=[dit_quant_scheme], outputs=[precision_mode])

gushiqiao's avatar
gushiqiao committed
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
        infer_btn.click(
            fn=run_inference,
            inputs=[
                model_type,
                task,
                prompt,
                negative_prompt,
                image_path,
                save_video_path,
                torch_compile,
                infer_steps,
                num_frames,
                resolution,
                seed,
                sample_shift,
                enable_teacache,
                teacache_thresh,
gushiqiao's avatar
gushiqiao committed
985
                use_ret_steps,
gushiqiao's avatar
gushiqiao committed
986
987
988
989
990
991
992
993
994
995
996
997
                enable_cfg,
                cfg_scale,
                dit_quant_scheme,
                t5_quant_scheme,
                clip_quant_scheme,
                fps,
                use_tiny_vae,
                use_tiling_vae,
                lazy_load,
                precision_mode,
                cpu_offload,
                offload_granularity,
gushiqiao's avatar
gushiqiao committed
998
                offload_ratio,
gushiqiao's avatar
gushiqiao committed
999
1000
1001
1002
                t5_offload_granularity,
                attention_type,
                quant_op,
                rotary_chunk,
gushiqiao's avatar
gushiqiao committed
1003
                rotary_chunk_size,
gushiqiao's avatar
gushiqiao committed
1004
1005
1006
1007
1008
1009
1010
1011
1012
                clean_cuda_cache,
            ],
            outputs=output_video,
        )

    demo.launch(share=True, server_port=args.server_port, server_name=args.server_name)


if __name__ == "__main__":
gushiqiao's avatar
gushiqiao committed
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
    parser = argparse.ArgumentParser(description="Light Video Generation")
    parser.add_argument("--model_path", type=str, required=True, help="Model folder path")
    parser.add_argument(
        "--model_cls",
        type=str,
        choices=["wan2.1"],
        default="wan2.1",
        help="Model class to use",
    )
    parser.add_argument("--server_port", type=int, default=7862, help="Server port")
    parser.add_argument("--server_name", type=str, default="0.0.0.0", help="Server ip")
    args = parser.parse_args()

    global model_path, model_cls
    model_path = args.model_path
    model_cls = args.model_cls

gushiqiao's avatar
gushiqiao committed
1030
    main()