gpt2.py 10 KB
Newer Older
1
# coding=utf-8
2
3
# Adapted from
# https://github.com/huggingface/transformers/blob/v4.28.0/src/transformers/models/gpt2/modeling_gpt2.py
Woosuk Kwon's avatar
Woosuk Kwon committed
4
# Copyright 2023 The vLLM team.
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# Copyright 2018 The OpenAI Team Authors and HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Woosuk Kwon's avatar
Woosuk Kwon committed
19
"""Inference-only GPT-2 model compatible with HuggingFace weights."""
20
from typing import List, Optional, Tuple
Woosuk Kwon's avatar
Woosuk Kwon committed
21
22
23
24
25

import torch
from torch import nn
from transformers import GPT2Config

Woosuk Kwon's avatar
Woosuk Kwon committed
26
27
28
from vllm.model_executor.input_metadata import InputMetadata
from vllm.model_executor.layers.activation import get_act_fn
from vllm.model_executor.layers.attention import PagedAttention
29
30
31
32
from vllm.model_executor.layers.linear import (ColumnParallelLinear,
                                               LinearMethodBase,
                                               QKVParallelLinear,
                                               RowParallelLinear)
Woosuk Kwon's avatar
Woosuk Kwon committed
33
from vllm.model_executor.layers.sampler import Sampler
34
35
from vllm.model_executor.layers.vocab_parallel_embedding import (
    VocabParallelEmbedding)
Woosuk Kwon's avatar
Woosuk Kwon committed
36
from vllm.model_executor.parallel_utils.parallel_state import (
37
38
39
    get_tensor_model_parallel_world_size)
from vllm.model_executor.weight_utils import (default_weight_loader,
                                              hf_model_weights_iterator)
40
from vllm.sequence import SamplerOutput
Woosuk Kwon's avatar
Woosuk Kwon committed
41
42
43
44
45
46

KVCache = Tuple[torch.Tensor, torch.Tensor]


class GPT2Attention(nn.Module):

47
48
49
50
51
    def __init__(
        self,
        config: GPT2Config,
        linear_method: Optional[LinearMethodBase] = None,
    ):
Woosuk Kwon's avatar
Woosuk Kwon committed
52
53
54
        super().__init__()
        self.hidden_size = config.hidden_size
        total_num_heads = config.num_attention_heads
55
56
        tensor_model_parallel_world_size = (
            get_tensor_model_parallel_world_size())
Woosuk Kwon's avatar
Woosuk Kwon committed
57
58
59
        assert total_num_heads % tensor_model_parallel_world_size == 0
        self.num_heads = total_num_heads // tensor_model_parallel_world_size
        self.head_dim = self.hidden_size // total_num_heads
60
        self.scale = self.head_dim**-0.5
Woosuk Kwon's avatar
Woosuk Kwon committed
61

62
        self.c_attn = QKVParallelLinear(
63
            self.hidden_size,
64
65
            self.head_dim,
            total_num_heads,
66
            bias=True,
67
            linear_method=linear_method,
68
69
70
71
72
        )
        self.c_proj = RowParallelLinear(
            self.hidden_size,
            self.hidden_size,
            bias=True,
73
            linear_method=linear_method,
74
        )
75
76
        self.attn = PagedAttention(self.num_heads,
                                   self.head_dim,
Woosuk Kwon's avatar
Woosuk Kwon committed
77
                                   scale=self.scale)
Woosuk Kwon's avatar
Woosuk Kwon committed
78
79
80
81
82
83
84
85
86
87
88

    def forward(
        self,
        hidden_states: torch.Tensor,
        kv_cache: KVCache,
        input_metadata: InputMetadata,
        cache_event: Optional[torch.cuda.Event],
    ) -> torch.Tensor:
        qkv, _ = self.c_attn(hidden_states)
        q, k, v = qkv.chunk(chunks=3, dim=-1)
        key_cache, value_cache = kv_cache
89
90
        attn_output = self.attn(q, k, v, key_cache, value_cache,
                                input_metadata, cache_event)
Woosuk Kwon's avatar
Woosuk Kwon committed
91
92
93
94
95
96
97
98
99
100
        attn_output, _ = self.c_proj(attn_output)
        return attn_output


class GPT2MLP(nn.Module):

    def __init__(
        self,
        intermediate_size: int,
        config: GPT2Config,
101
        linear_method: Optional[LinearMethodBase] = None,
Woosuk Kwon's avatar
Woosuk Kwon committed
102
103
104
    ):
        super().__init__()
        hidden_size = config.hidden_size
105
106
107
108
        self.c_fc = ColumnParallelLinear(
            hidden_size,
            intermediate_size,
            bias=True,
109
            linear_method=linear_method,
110
111
112
113
114
        )
        self.c_proj = RowParallelLinear(
            intermediate_size,
            hidden_size,
            bias=True,
115
            linear_method=linear_method,
116
        )
117
118
119
        quant_config = getattr(linear_method, "quant_config", None)
        self.act = get_act_fn(config.activation_function, quant_config,
                              intermediate_size)
Woosuk Kwon's avatar
Woosuk Kwon committed
120
121
122
123
124
125
126
127
128
129

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        hidden_states, _ = self.c_fc(hidden_states)
        hidden_states = self.act(hidden_states)
        hidden_states, _ = self.c_proj(hidden_states)
        return hidden_states


class GPT2Block(nn.Module):

130
131
132
133
134
    def __init__(
        self,
        config: GPT2Config,
        linear_method: Optional[LinearMethodBase] = None,
    ):
Woosuk Kwon's avatar
Woosuk Kwon committed
135
136
        super().__init__()
        hidden_size = config.hidden_size
137
138
        inner_dim = (config.n_inner if config.n_inner is not None else 4 *
                     hidden_size)
Woosuk Kwon's avatar
Woosuk Kwon committed
139
140

        self.ln_1 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
141
        self.attn = GPT2Attention(config, linear_method)
Woosuk Kwon's avatar
Woosuk Kwon committed
142
        self.ln_2 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
143
        self.mlp = GPT2MLP(inner_dim, config, linear_method)
Woosuk Kwon's avatar
Woosuk Kwon committed
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172

    def forward(
        self,
        hidden_states: torch.Tensor,
        kv_cache: KVCache,
        input_metadata: InputMetadata,
        cache_event: Optional[torch.cuda.Event],
    ) -> torch.Tensor:
        residual = hidden_states
        hidden_states = self.ln_1(hidden_states)
        attn_output = self.attn(
            hidden_states=hidden_states,
            kv_cache=kv_cache,
            input_metadata=input_metadata,
            cache_event=cache_event,
        )
        # residual connection
        hidden_states = attn_output + residual

        residual = hidden_states
        hidden_states = self.ln_2(hidden_states)
        feed_forward_hidden_states = self.mlp(hidden_states)
        # residual connection
        hidden_states = residual + feed_forward_hidden_states
        return hidden_states


class GPT2Model(nn.Module):

173
174
175
176
177
    def __init__(
        self,
        config: GPT2Config,
        linear_method: Optional[LinearMethodBase] = None,
    ):
Woosuk Kwon's avatar
Woosuk Kwon committed
178
179
        super().__init__()
        self.config = config
180
181
182
        assert not config.add_cross_attention
        assert not config.scale_attn_by_inverse_layer_idx
        assert not config.reorder_and_upcast_attn
Woosuk Kwon's avatar
Woosuk Kwon committed
183
        self.embed_dim = config.hidden_size
184
        self.wte = VocabParallelEmbedding(config.vocab_size, self.embed_dim)
Woosuk Kwon's avatar
Woosuk Kwon committed
185
        self.wpe = nn.Embedding(config.max_position_embeddings, self.embed_dim)
186
187
188
189
        self.h = nn.ModuleList([
            GPT2Block(config, linear_method)
            for _ in range(config.num_hidden_layers)
        ])
Woosuk Kwon's avatar
Woosuk Kwon committed
190
191
192
193
        self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)

    def forward(
        self,
194
195
        input_ids: torch.Tensor,
        position_ids: torch.Tensor,
Woosuk Kwon's avatar
Woosuk Kwon committed
196
197
198
199
200
201
202
203
204
        kv_caches: List[KVCache],
        input_metadata: InputMetadata,
        cache_events: Optional[List[torch.cuda.Event]],
    ) -> torch.Tensor:
        inputs_embeds = self.wte(input_ids)
        position_embeds = self.wpe(position_ids)
        hidden_states = inputs_embeds + position_embeds

        for i in range(len(self.h)):
205
            cache_event = None if cache_events is None else cache_events[i]
Woosuk Kwon's avatar
Woosuk Kwon committed
206
            layer = self.h[i]
207
208
            hidden_states = layer(hidden_states, kv_caches[i], input_metadata,
                                  cache_event)
Woosuk Kwon's avatar
Woosuk Kwon committed
209
210
211
212
213
214
215

        hidden_states = self.ln_f(hidden_states)
        return hidden_states


class GPT2LMHeadModel(nn.Module):

216
217
218
219
220
    def __init__(
        self,
        config: GPT2Config,
        linear_method: Optional[LinearMethodBase] = None,
    ):
Woosuk Kwon's avatar
Woosuk Kwon committed
221
222
        super().__init__()
        self.config = config
223
224
        self.linear_method = linear_method
        self.transformer = GPT2Model(config, linear_method)
Woosuk Kwon's avatar
Woosuk Kwon committed
225
226
227
228
229
        self.lm_head_weight = self.transformer.wte.weight
        self.sampler = Sampler(config.vocab_size)

    def forward(
        self,
230
231
        input_ids: torch.Tensor,
        positions: torch.Tensor,
Woosuk Kwon's avatar
Woosuk Kwon committed
232
233
234
        kv_caches: List[KVCache],
        input_metadata: InputMetadata,
        cache_events: Optional[List[torch.cuda.Event]],
235
    ) -> SamplerOutput:
236
237
238
239
        hidden_states = self.transformer(input_ids, positions, kv_caches,
                                         input_metadata, cache_events)
        next_tokens = self.sampler(self.lm_head_weight, hidden_states,
                                   input_metadata)
Woosuk Kwon's avatar
Woosuk Kwon committed
240
241
        return next_tokens

242
243
    def load_weights(self,
                     model_name_or_path: str,
Woosuk Kwon's avatar
Woosuk Kwon committed
244
                     cache_dir: Optional[str] = None,
Jasmond L's avatar
Jasmond L committed
245
246
                     load_format: str = "auto",
                     revision: Optional[str] = None):
247
        params_dict = dict(self.named_parameters(remove_duplicate=False))
Woosuk Kwon's avatar
Woosuk Kwon committed
248
        for name, loaded_weight in hf_model_weights_iterator(
Jasmond L's avatar
Jasmond L committed
249
                model_name_or_path, cache_dir, load_format, revision):
Woosuk Kwon's avatar
Woosuk Kwon committed
250
251
252
253
            if "lm_head.weight" in name:
                # GPT-2 ties the weights of the embedding layer and the final
                # linear layer.
                continue
254
            if ".attn.bias" in name or ".attn.masked_bias" in name:
Woosuk Kwon's avatar
Woosuk Kwon committed
255
256
257
                # Skip attention mask.
                # NOTE: "c_attn.bias" should not be skipped.
                continue
258
259
            if not name.startswith("transformer."):
                name = "transformer." + name
260
            param = params_dict[name]
Woosuk Kwon's avatar
Woosuk Kwon committed
261
262
            # The HF's GPT-2 implementation uses Conv1D instead of Linear.
            # Because of this, we need to transpose the weights.
263
            # Note(zhuohan): the logic below might break quantized models.
Woosuk Kwon's avatar
Woosuk Kwon committed
264
265
266
267
268
269
270
            for conv1d_weight_name in ["c_attn", "c_proj", "c_fc"]:
                if conv1d_weight_name not in name:
                    continue
                if not name.endswith(".weight"):
                    continue
                loaded_weight = loaded_weight.t()

271
272
273
            weight_loader = getattr(param, "weight_loader",
                                    default_weight_loader)
            weight_loader(param, loaded_weight)