serving_completion.py 13.8 KB
Newer Older
1
import asyncio
2
3
import time
from fastapi import Request
Simon Mo's avatar
Simon Mo committed
4
from typing import AsyncGenerator, AsyncIterator, Callable, List, Optional, Dict, Tuple
5
6
7
from vllm.logger import init_logger
from vllm.utils import random_uuid
from vllm.engine.async_llm_engine import AsyncLLMEngine
8
9
10
11
12
13
14
15
16
from .protocol import (
    CompletionRequest,
    CompletionResponse,
    CompletionResponseChoice,
    CompletionResponseStreamChoice,
    CompletionStreamResponse,
    LogProbs,
    UsageInfo,
)
17
from vllm.outputs import RequestOutput
18
from vllm.entrypoints.openai.serving_engine import OpenAIServing, LoRA
19
from vllm.model_executor.guided_decoding import get_guided_decoding_logits_processor
20
21
22

logger = init_logger(__name__)

Simon Mo's avatar
Simon Mo committed
23
24
TypeTokenIDs = List[int]
TypeTopLogProbs = List[Optional[Dict[int, float]]]
25
26
27
TypeCreateLogProbsFn = Callable[
    [TypeTokenIDs, TypeTopLogProbs, Optional[int], int], LogProbs]

28

29
async def completion_stream_generator(
30
31
32
    request: CompletionRequest,
    raw_request: Request,
    on_abort,
Simon Mo's avatar
Simon Mo committed
33
    result_generator: AsyncIterator[Tuple[int, RequestOutput]],
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
    create_logprobs_fn: TypeCreateLogProbsFn,
    request_id: str,
    created_time: int,
    model_name: str,
    num_prompts: int,
) -> AsyncGenerator[str, None]:
    previous_texts = [""] * request.n * num_prompts
    previous_num_tokens = [0] * request.n * num_prompts
    has_echoed = [False] * request.n * num_prompts

    async for prompt_idx, res in result_generator:

        # Abort the request if the client disconnects.
        if await raw_request.is_disconnected():
            await on_abort(f"{request_id}-{prompt_idx}")
            raise StopAsyncIteration()

51
        for output in res.outputs:
52
53
54
55
56
57
58
59
60
61
62
63
64
65
            i = output.index + prompt_idx * request.n
            # TODO(simon): optimize the performance by avoiding full text O(n^2) sending.

            if request.echo and request.max_tokens == 0:
                # only return the prompt
                delta_text = res.prompt
                delta_token_ids = res.prompt_token_ids
                top_logprobs = res.prompt_logprobs
                has_echoed[i] = True
            elif request.echo and request.max_tokens > 0 and not has_echoed[i]:
                # echo the prompt and first token
                delta_text = res.prompt + output.text
                delta_token_ids = res.prompt_token_ids + output.token_ids
                top_logprobs = res.prompt_logprobs + (output.logprobs or [])
66
                has_echoed[i] = True
67
68
69
70
71
72
73
            else:
                # return just the delta
                delta_text = output.text[len(previous_texts[i]):]
                delta_token_ids = output.token_ids[previous_num_tokens[i]:]
                top_logprobs = output.logprobs[
                    previous_num_tokens[i]:] if output.logprobs else None

74
            if request.logprobs is not None:
75
                assert top_logprobs is not None, "top_logprobs must be provided when logprobs is requested"
76
                logprobs = create_logprobs_fn(
77
                    token_ids=delta_token_ids,
78
79
                    top_logprobs=top_logprobs,
                    num_output_top_logprobs=request.logprobs,
80
                    initial_text_offset=len(previous_texts[i]),
81
82
83
                )
            else:
                logprobs = None
84

85
86
87
88
89
90
91
92
93
94
95
96
97
98
            previous_texts[i] = output.text
            previous_num_tokens[i] = len(output.token_ids)
            finish_reason = output.finish_reason
            response_json = CompletionStreamResponse(
                id=request_id,
                created=created_time,
                model=model_name,
                choices=[
                    CompletionResponseStreamChoice(
                        index=i,
                        text=delta_text,
                        logprobs=logprobs,
                        finish_reason=finish_reason,
                    )
99
                ]).model_dump_json(exclude_unset=True)
100
101
            yield f"data: {response_json}\n\n"

102
            if output.finish_reason is not None:  # return final usage
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
                logprobs = LogProbs() if request.logprobs is not None else None
                prompt_tokens = len(res.prompt_token_ids)
                completion_tokens = len(output.token_ids)
                final_usage = UsageInfo(
                    prompt_tokens=prompt_tokens,
                    completion_tokens=completion_tokens,
                    total_tokens=prompt_tokens + completion_tokens,
                )
                response_json = CompletionStreamResponse(
                    id=request_id,
                    created=created_time,
                    model=model_name,
                    choices=[
                        CompletionResponseStreamChoice(
                            index=i,
                            text="",
                            logprobs=logprobs,
                            finish_reason=output.finish_reason,
                        )
                    ],
                    usage=final_usage,
124
                ).model_dump_json(exclude_unset=True)
125
126
127
128
129
                yield f"data: {response_json}\n\n"

    yield "data: [DONE]\n\n"


Simon Mo's avatar
Simon Mo committed
130
def parse_prompt_format(prompt) -> Tuple[bool, list]:
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
    # get the prompt, openai supports the following
    # "a string, array of strings, array of tokens, or array of token arrays."
    prompt_is_tokens = False
    prompts = [prompt]  # case 1: a string
    if isinstance(prompt, list):
        if len(prompt) == 0:
            raise ValueError("please provide at least one prompt")
        elif isinstance(prompt[0], str):
            prompt_is_tokens = False
            prompts = prompt  # case 2: array of strings
        elif isinstance(prompt[0], int):
            prompt_is_tokens = True
            prompts = [prompt]  # case 3: array of tokens
        elif isinstance(prompt[0], list) and isinstance(prompt[0][0], int):
            prompt_is_tokens = True
            prompts = prompt  # case 4: array of token arrays
        else:
            raise ValueError(
                "prompt must be a string, array of strings, array of tokens, or array of token arrays"
            )
    return prompt_is_tokens, prompts


154
def request_output_to_completion_response(
Simon Mo's avatar
Simon Mo committed
155
    final_res_batch: List[RequestOutput],
156
157
158
159
160
161
    request: CompletionRequest,
    create_logprobs_fn: TypeCreateLogProbsFn,
    request_id: str,
    created_time: int,
    model_name: str,
) -> CompletionResponse:
162
    choices = []
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
    num_prompt_tokens = 0
    num_generated_tokens = 0
    for final_res in final_res_batch:
        assert final_res is not None
        prompt_token_ids = final_res.prompt_token_ids
        prompt_logprobs = final_res.prompt_logprobs
        prompt_text = final_res.prompt

        for output in final_res.outputs:
            if request.echo and request.max_tokens == 0:
                token_ids = prompt_token_ids
                top_logprobs = prompt_logprobs
                output_text = prompt_text
            elif request.echo and request.max_tokens > 0:
                token_ids = prompt_token_ids + output.token_ids
                top_logprobs = prompt_logprobs + output.logprobs
                output_text = prompt_text + output.text
            else:
181
182
                token_ids = output.token_ids
                top_logprobs = output.logprobs
183
184
185
186
187
188
189
190
                output_text = output.text

            if request.logprobs is not None:
                logprobs = create_logprobs_fn(
                    token_ids=token_ids,
                    top_logprobs=top_logprobs,
                    num_output_top_logprobs=request.logprobs,
                )
191
            else:
192
193
194
195
196
197
198
                logprobs = None

            choice_data = CompletionResponseChoice(
                index=len(choices),
                text=output_text,
                logprobs=logprobs,
                finish_reason=output.finish_reason,
199
            )
200
201
202
203
204
205
            choices.append(choice_data)

        num_prompt_tokens += len(prompt_token_ids)
        num_generated_tokens += sum(
            len(output.token_ids) for output in final_res.outputs)

206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
    usage = UsageInfo(
        prompt_tokens=num_prompt_tokens,
        completion_tokens=num_generated_tokens,
        total_tokens=num_prompt_tokens + num_generated_tokens,
    )

    return CompletionResponse(
        id=request_id,
        created=created_time,
        model=model_name,
        choices=choices,
        usage=usage,
    )


221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
def merge_async_iterators(*iterators):
    """Merge multiple asynchronous iterators into a single iterator.

    This method handle the case where some iterators finish before others.
    When it yields, it yields a tuple (i, item) where i is the index of the
    iterator that yields the item.
    """
    queue = asyncio.Queue()

    finished = [False] * len(iterators)

    async def producer(i, iterator):
        async for item in iterator:
            await queue.put((i, item))
        finished[i] = True

    _tasks = [
        asyncio.create_task(producer(i, iterator))
        for i, iterator in enumerate(iterators)
    ]

    async def consumer():
        while not all(finished) or not queue.empty():
            item = await queue.get()
            yield item
        await asyncio.gather(*_tasks)

    return consumer()


251
252
class OpenAIServingCompletion(OpenAIServing):

253
254
255
256
257
258
259
    def __init__(self,
                 engine: AsyncLLMEngine,
                 served_model: str,
                 lora_modules: Optional[List[LoRA]] = None):
        super().__init__(engine=engine,
                         served_model=served_model,
                         lora_modules=lora_modules)
260
261
262
263
264
265
266
267

    async def create_completion(self, request: CompletionRequest,
                                raw_request: Request):
        """Completion API similar to OpenAI's API.

        See https://platform.openai.com/docs/api-reference/completions/create
        for the API specification. This API mimics the OpenAI Completion API.

268
        NOTE: Currently we do not support the following feature:
269
270
271
272
273
274
275
            - suffix (the language models we currently support do not support
            suffix)
        """
        error_check_ret = await self._check_model(request)
        if error_check_ret is not None:
            return error_check_ret

276
        # Return error for unsupported features.
277
278
279
280
281
282
        if request.suffix is not None:
            return self.create_error_response(
                "suffix is not currently supported")

        model_name = request.model
        request_id = f"cmpl-{random_uuid()}"
283
        created_time = int(time.monotonic())
284

285
        # Schedule the request and get the result generator.
286
        generators = []
287
288
        try:
            sampling_params = request.to_sampling_params()
289
            lora_request = self._maybe_get_lora(request)
290
291
292
293
294
295
296
297
            guided_decode_logit_processor = (
                await get_guided_decoding_logits_processor(
                    request, self.engine.get_tokenizer()))
            if guided_decode_logit_processor is not None:
                if sampling_params.logits_processors is None:
                    sampling_params.logits_processors = []
                sampling_params.logits_processors.append(
                    guided_decode_logit_processor)
298
            prompt_is_tokens, prompts = parse_prompt_format(request.prompt)
299

300
301
302
303
304
305
306
307
308
309
310
311
            for i, prompt in enumerate(prompts):
                if prompt_is_tokens:
                    input_ids = self._validate_prompt_and_tokenize(
                        request, prompt_ids=prompt)
                else:
                    input_ids = self._validate_prompt_and_tokenize(
                        request, prompt=prompt)

                generators.append(
                    self.engine.generate(None,
                                         sampling_params,
                                         f"{request_id}-{i}",
312
313
                                         prompt_token_ids=input_ids,
                                         lora_request=lora_request))
314
315
        except ValueError as e:
            return self.create_error_response(str(e))
316

Simon Mo's avatar
Simon Mo committed
317
        result_generator: AsyncIterator[Tuple[
318
319
            int, RequestOutput]] = merge_async_iterators(*generators)

320
321
322
323
324
325
326
327
        # Similar to the OpenAI API, when n != best_of, we do not stream the
        # results. In addition, we do not stream the results when use beam search.
        stream = (request.stream
                  and (request.best_of is None or request.n == request.best_of)
                  and not request.use_beam_search)

        # Streaming response
        if stream:
328
329
330
331
            return completion_stream_generator(request,
                                               raw_request,
                                               self.engine.abort,
                                               result_generator,
332
                                               self._create_logprobs,
333
334
335
336
                                               request_id,
                                               created_time,
                                               model_name,
                                               num_prompts=len(prompts))
337
338

        # Non-streaming response
339
340
        final_res_batch: RequestOutput = [None] * len(prompts)
        async for i, res in result_generator:
341
342
            if await raw_request.is_disconnected():
                # Abort the request if the client disconnects.
343
                await self.engine.abort(f"{request_id}-{i}")
344
                return self.create_error_response("Client disconnected")
345
            final_res_batch[i] = res
346
        response = request_output_to_completion_response(
347
348
            final_res_batch, request, self._create_logprobs, request_id,
            created_time, model_name)
349

350
351
        # When user requests streaming but we don't stream, we still need to
        # return a streaming response with a single event.
352
        if request.stream:
353
            response_json = response.model_dump_json()
354
355
356
357
358
359
360
361

            async def fake_stream_generator() -> AsyncGenerator[str, None]:
                yield f"data: {response_json}\n\n"
                yield "data: [DONE]\n\n"

            return fake_stream_generator()

        return response