moe_align_block_size_kernels.cu 4.05 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
#include <torch/extension.h>
#include <ATen/cuda/CUDAContext.h>

#include <ATen/ATen.h>
#include <THC/THCAtomics.cuh>

#include "cuda_compat.h"
#include "dispatch_utils.h"

const static size_t NUM_MAX_EXPERTS = 64;
#define CEILDIV(x,y) (((x) + (y) - 1) / (y))

namespace vllm {
template <typename scalar_t>
__global__ void moe_align_block_size_kernel(scalar_t *__restrict__ topk_ids, 
                                int32_t *sorted_token_ids, 
                                int32_t *expert_ids, 
                                int32_t *total_tokens_post_pad,
                                int32_t num_experts, 
                                int32_t block_size, 
                                size_t numel) {
    const size_t tokens_per_thread = CEILDIV(numel, blockDim.x);
    const size_t start_idx = threadIdx.x * tokens_per_thread;
    __shared__ int32_t tokens_cnts[NUM_MAX_EXPERTS + 1][NUM_MAX_EXPERTS];
    __shared__ int32_t cumsum[NUM_MAX_EXPERTS + 1];
    for (int i = 0; i < num_experts; ++i) {
        tokens_cnts[threadIdx.x + 1][i] = 0;
    }

    /**
    * In the first step we compute token_cnts[thread_index + 1][expert_index],
    * which counts how many tokens in the token shard of thread_index are assigned
    * to expert expert_index.
    */
    for (int i = start_idx; i < numel && i < start_idx + tokens_per_thread; ++i) {
        ++tokens_cnts[threadIdx.x + 1][topk_ids[i]]; 
    }

    __syncthreads();

    // For each expert we accumulate the token counts from the different threads.
    tokens_cnts[0][threadIdx.x] = 0;
    for (int i = 1; i <= blockDim.x; ++i) {
        tokens_cnts[i][threadIdx.x] += tokens_cnts[i-1][threadIdx.x];
    }

    __syncthreads();
    
    // We accumulate the token counts of all experts in thread 0.
    if (threadIdx.x == 0) {
        cumsum[0] = 0;
        for (int i = 1; i <= num_experts; ++i) {
            cumsum[i] = cumsum[i-1] + CEILDIV(tokens_cnts[blockDim.x][i - 1], block_size) * block_size;
        }
        *total_tokens_post_pad = cumsum[num_experts];
    }

    __syncthreads();

    /**
    * For each expert, each thread processes the tokens of the corresponding blocks
    * and stores the corresponding expert_id for each block.
    */
    for (int i = cumsum[threadIdx.x];i < cumsum[threadIdx.x + 1];i += block_size) {
        expert_ids[i / block_size] = threadIdx.x;
    }
    
    /**
    * Each thread processes a token shard, calculating the index of each token after
    * sorting by expert number. Given the example topk_ids = [0,1,2,1,2,3,0,3,4] and
    * block_size = 4, then the output would be [0, 6, *, *, 1, 3, *, *, 2, 4, *, *, 5, 7, *, *, 8, *, *, *],
    * where * represents a padding value(preset in python).
    */
    for (int i = start_idx; i < numel && i < start_idx + tokens_per_thread; ++i) {
        int32_t expert_id = topk_ids[i];
        /** The cumsum[expert_id] stores the starting index of the tokens that the
        * expert with expert_id needs to process, and tokens_cnts[threadIdx.x][expert_id]
        * stores the indices of the tokens processed by the expert with expert_id within
        * the current thread's token shard.
        */
        int32_t rank_post_pad = tokens_cnts[threadIdx.x][expert_id] + cumsum[expert_id];
        sorted_token_ids[rank_post_pad] = i;
        ++tokens_cnts[threadIdx.x][expert_id];
    }
}
}

void moe_align_block_size(
    torch::Tensor topk_ids,
    int num_experts,
    int block_size,
    torch::Tensor sorted_token_ids,
    torch::Tensor experts_ids,
    torch::Tensor num_tokens_post_pad) {
    const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
    assert(num_experts <= NUM_MAX_EXPERTS);
    VLLM_DISPATCH_INTEGRAL_TYPES(
Philipp Moritz's avatar
Philipp Moritz committed
98
        topk_ids.scalar_type(), "moe_align_block_size_kernel", [&] {
99
100
101
102
103
104
105
106
107
108
        vllm::moe_align_block_size_kernel<scalar_t><<<1, num_experts, 0, stream>>>(
            topk_ids.data_ptr<scalar_t>(), 
            sorted_token_ids.data_ptr<int32_t>(), 
            experts_ids.data_ptr<int32_t>(), 
            num_tokens_post_pad.data_ptr<int32_t>(), 
            num_experts,
            block_size,
            topk_ids.numel());
    });
}