"app/src/app.tsx" did not exist on "ab828602f2e737816bffee6fdaf312d8c4f2aabf"
gpt_j.py 10.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# coding=utf-8
# Adapted from
# https://github.com/huggingface/transformers/blob/v4.28.0/src/transformers/models/gptj/modeling_gptj.py
# Copyright 2023 The vLLM team.
# Copyright 2021 The EleutherAI and HuggingFace Teams. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Woosuk Kwon's avatar
Woosuk Kwon committed
18
"""Inference-only GPT-J model compatible with HuggingFace weights."""
19
from typing import List, Optional, Tuple
20
21
22
23
24
25
26

import torch
from torch import nn
from transformers import GPTJConfig

from vllm.model_executor.input_metadata import InputMetadata
from vllm.model_executor.layers.activation import get_act_fn
Woosuk Kwon's avatar
Woosuk Kwon committed
27
from vllm.model_executor.layers.attention import PagedAttention
28
29
30
31
from vllm.model_executor.layers.linear import (ColumnParallelLinear,
                                               LinearMethodBase,
                                               QKVParallelLinear,
                                               RowParallelLinear)
Woosuk Kwon's avatar
Woosuk Kwon committed
32
from vllm.model_executor.layers.rotary_embedding import get_rope
33
from vllm.model_executor.layers.sampler import Sampler
34
35
from vllm.model_executor.layers.vocab_parallel_embedding import (
    VocabParallelEmbedding, ParallelLMHead)
36
from vllm.model_executor.parallel_utils.parallel_state import (
37
    get_tensor_model_parallel_world_size)
38
from vllm.model_executor.sampling_metadata import SamplingMetadata
39
40
from vllm.model_executor.weight_utils import (default_weight_loader,
                                              hf_model_weights_iterator)
41
from vllm.sequence import SamplerOutput
42
43
44
45
46
47

KVCache = Tuple[torch.Tensor, torch.Tensor]


class GPTJAttention(nn.Module):

48
49
50
51
52
    def __init__(
        self,
        config: GPTJConfig,
        linear_method: Optional[LinearMethodBase] = None,
    ):
53
54
55
56
57
        super().__init__()
        self.total_num_heads = config.num_attention_heads
        self.hidden_size = config.hidden_size
        self.head_size = self.hidden_size // self.total_num_heads

58
        self.qkv_proj = QKVParallelLinear(
59
            config.hidden_size,
60
61
            self.head_size,
            self.total_num_heads,
62
            bias=False,
63
            linear_method=linear_method,
64
65
66
67
68
        )
        self.out_proj = RowParallelLinear(
            config.hidden_size,
            config.hidden_size,
            bias=False,
69
            linear_method=linear_method,
70
        )
71
72
73
74
75
76

        tp_world_size = get_tensor_model_parallel_world_size()
        assert self.total_num_heads % tp_world_size == 0
        self.num_heads = self.total_num_heads // tp_world_size

        scaling = self.head_size**-0.5
77
        assert getattr(config, "rotary", True)
78
        assert config.rotary_dim % 2 == 0
79
80
81
        rope_theta = getattr(config, "rope_theta", 10000)
        max_position_embeddings = getattr(config, "max_position_embeddings",
                                          8192)
Woosuk Kwon's avatar
Woosuk Kwon committed
82
        self.rotary_emb = get_rope(
83
            self.head_size,
Woosuk Kwon's avatar
Woosuk Kwon committed
84
            rotary_dim=config.rotary_dim,
85
            max_position=max_position_embeddings,
Woosuk Kwon's avatar
Woosuk Kwon committed
86
87
88
89
            base=rope_theta,
            is_neox_style=False,
        )
        self.attn = PagedAttention(self.num_heads, self.head_size, scaling)
90
91
92
93
94
95
96
97
98
99
100

    def forward(
        self,
        position_ids: torch.Tensor,
        hidden_states: torch.Tensor,
        kv_cache: KVCache,
        input_metadata: InputMetadata,
        cache_event: Optional[torch.cuda.Event],
    ) -> torch.Tensor:
        qkv, _ = self.qkv_proj(hidden_states)
        q, k, v = qkv.chunk(chunks=3, dim=-1)
Woosuk Kwon's avatar
Woosuk Kwon committed
101
        q, k = self.rotary_emb(position_ids, q, k)
102
        k_cache, v_cache = kv_cache
Woosuk Kwon's avatar
Woosuk Kwon committed
103
104
        attn_output = self.attn(q, k, v, k_cache, v_cache, input_metadata,
                                cache_event)
105
106
107
108
109
110
        attn_output, _ = self.out_proj(attn_output)
        return attn_output


class GPTJMLP(nn.Module):

111
112
113
114
115
116
    def __init__(
        self,
        intermediate_size: int,
        config: GPTJConfig,
        linear_method: Optional[LinearMethodBase] = None,
    ):
117
118
        super().__init__()
        hidden_size = config.n_embd
119
120
121
        self.fc_in = ColumnParallelLinear(
            hidden_size,
            intermediate_size,
122
            linear_method=linear_method,
123
124
125
126
        )
        self.fc_out = RowParallelLinear(
            intermediate_size,
            hidden_size,
127
            linear_method=linear_method,
128
        )
129
130
131
        quant_config = getattr(linear_method, "quant_config", None)
        self.act = get_act_fn(config.activation_function, quant_config,
                              intermediate_size)
132
133
134
135
136
137
138
139
140
141

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        hidden_states, _ = self.fc_in(hidden_states)
        hidden_states = self.act(hidden_states)
        hidden_states, _ = self.fc_out(hidden_states)
        return hidden_states


class GPTJBlock(nn.Module):

142
143
144
145
146
    def __init__(
        self,
        config: GPTJConfig,
        linear_method: Optional[LinearMethodBase] = None,
    ):
147
        super().__init__()
148
        inner_dim = 4 * config.n_embd if config.n_inner is None else config.n_inner
149
        self.ln_1 = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
150
151
        self.attn = GPTJAttention(config, linear_method)
        self.mlp = GPTJMLP(inner_dim, config, linear_method)
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176

    def forward(
        self,
        position_ids: torch.Tensor,
        hidden_states: torch.Tensor,
        kv_cache: KVCache,
        input_metadata: InputMetadata,
        cache_event: Optional[torch.cuda.Event],
    ) -> torch.Tensor:
        residual = hidden_states
        hidden_states = self.ln_1(hidden_states)
        attn_output = self.attn(
            position_ids=position_ids,
            hidden_states=hidden_states,
            kv_cache=kv_cache,
            input_metadata=input_metadata,
            cache_event=cache_event,
        )
        mlp_output = self.mlp(hidden_states)
        hidden_states = attn_output + mlp_output + residual
        return hidden_states


class GPTJModel(nn.Module):

177
178
179
180
181
    def __init__(
        self,
        config: GPTJConfig,
        linear_method: Optional[LinearMethodBase] = None,
    ):
182
183
184
        super().__init__()
        self.config = config
        self.embed_dim = config.n_embd
185
186
187
188
        self.wte = VocabParallelEmbedding(
            config.vocab_size,
            self.embed_dim,
        )
189
        self.h = nn.ModuleList(
190
            [GPTJBlock(config, linear_method) for _ in range(config.n_layer)])
191
192
193
194
195
196
197
198
199
200
201
202
        self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)

    def forward(
        self,
        input_ids: torch.Tensor,
        position_ids: torch.Tensor,
        kv_caches: List[KVCache],
        input_metadata: InputMetadata,
        cache_events: Optional[List[torch.cuda.Event]],
    ) -> torch.Tensor:
        hidden_states = self.wte(input_ids)
        for i in range(len(self.h)):
203
            cache_event = None if cache_events is None else cache_events[i]
204
205
206
207
208
209
210
211
212
213
214
215
216
217
            layer = self.h[i]
            hidden_states = layer(
                position_ids,
                hidden_states,
                kv_caches[i],
                input_metadata,
                cache_event,
            )
        hidden_states = self.ln_f(hidden_states)
        return hidden_states


class GPTJForCausalLM(nn.Module):

218
219
220
221
222
    def __init__(
        self,
        config: GPTJConfig,
        linear_method: Optional[LinearMethodBase] = None,
    ):
223
224
        super().__init__()
        self.config = config
225
        self.linear_method = linear_method
226
        assert not config.tie_word_embeddings
227
228
        self.transformer = GPTJModel(config, linear_method)
        self.lm_head = ParallelLMHead(
229
            config.vocab_size,
230
231
            config.n_embd,
            bias=True,
232
        )
233
234
235
236
237
238
239
240
241
        self.sampler = Sampler(config.vocab_size)

    def forward(
        self,
        input_ids: torch.Tensor,
        positions: torch.Tensor,
        kv_caches: List[KVCache],
        input_metadata: InputMetadata,
        cache_events: Optional[List[torch.cuda.Event]],
242
    ) -> torch.Tensor:
243
244
        hidden_states = self.transformer(input_ids, positions, kv_caches,
                                         input_metadata, cache_events)
245
246
247
248
249
250
251
        return hidden_states

    def sample(
        self,
        hidden_states: torch.Tensor,
        sampling_metadata: SamplingMetadata,
    ) -> SamplerOutput:
252
        next_tokens = self.sampler(self.lm_head.weight, hidden_states,
253
                                   sampling_metadata, self.lm_head.bias)
254
255
256
257
258
        return next_tokens

    def load_weights(self,
                     model_name_or_path: str,
                     cache_dir: Optional[str] = None,
Jasmond L's avatar
Jasmond L committed
259
260
                     load_format: str = "auto",
                     revision: Optional[str] = None):
261
262
263
264
265
266
267
268
269
        stacked_params_mapping = [
            # (param_name, shard_name, shard_id)
            ("qkv_proj", "q_proj", "q"),
            ("qkv_proj", "k_proj", "k"),
            ("qkv_proj", "v_proj", "v"),
            ("gate_up_proj", "gate_proj", 0),
            ("gate_up_proj", "up_proj", 1),
        ]
        params_dict = dict(self.named_parameters())
270
        for name, loaded_weight in hf_model_weights_iterator(
Jasmond L's avatar
Jasmond L committed
271
                model_name_or_path, cache_dir, load_format, revision):
272
273
            if "attn.bias" in name or "attn.masked_bias" in name:
                continue
274
275
            for (param_name, weight_name, shard_id) in stacked_params_mapping:
                if weight_name not in name:
276
                    continue
277
278
279
                param = params_dict[name.replace(weight_name, param_name)]
                weight_loader = param.weight_loader
                weight_loader(param, loaded_weight, shard_id)
280
                break
281
282
283
284
285
            else:
                param = params_dict[name]
                weight_loader = getattr(param, "weight_loader",
                                        default_weight_loader)
                weight_loader(param, loaded_weight)