sampler.py 15.8 KB
Newer Older
1
"""A layer that samples the next tokens from the model's outputs."""
Zhuohan Li's avatar
Zhuohan Li committed
2
from typing import Dict, List, Tuple, Optional
Woosuk Kwon's avatar
Woosuk Kwon committed
3

4
import numpy as np
Woosuk Kwon's avatar
Woosuk Kwon committed
5
6
7
import torch
import torch.nn as nn

Woosuk Kwon's avatar
Woosuk Kwon committed
8
9
from vllm.model_executor.input_metadata import InputMetadata
from vllm.model_executor.parallel_utils.tensor_parallel import (
10
    gather_from_tensor_model_parallel_region)
Woosuk Kwon's avatar
Woosuk Kwon committed
11
12
from vllm.sampling_params import SamplingParams
from vllm.sequence import SequenceOutputs
Woosuk Kwon's avatar
Woosuk Kwon committed
13

14
_SAMPLING_EPS = 1e-5
Woosuk Kwon's avatar
Minor  
Woosuk Kwon committed
15

Woosuk Kwon's avatar
Woosuk Kwon committed
16
class Sampler(nn.Module):
17
18
19
20
21
22
23
24
25
26
27
28
29
    """Samples the next tokens from the model's outputs.

    This layer does the following:
    1. Discard the hidden states that are not used for sampling (i.e., all
        tokens except the final one in each prompt).
    2. Compute the logits for the next tokens.
    3. Apply presence and frequency penalties.
    4. Apply temperature scaling.
    5. Apply top-p and top-k truncation.
    6. Sample the next tokens.
    Here, each sequence group within the batch can have different sampling
    parameters (e.g., sampling method, temperature, top-p, top-k, etc.).
    """
Woosuk Kwon's avatar
Woosuk Kwon committed
30

Woosuk Kwon's avatar
Woosuk Kwon committed
31
    def __init__(self, vocab_size: int) -> None:
32
        super().__init__()
Woosuk Kwon's avatar
Woosuk Kwon committed
33
        self.vocab_size = vocab_size
Woosuk Kwon's avatar
Woosuk Kwon committed
34
35
36

    def forward(
        self,
Woosuk Kwon's avatar
Woosuk Kwon committed
37
        embedding: torch.Tensor,
Woosuk Kwon's avatar
Woosuk Kwon committed
38
39
        hidden_states: torch.Tensor,
        input_metadata: InputMetadata,
40
41
42
    ) -> Dict[int, SequenceOutputs]:
        # Get the hidden states that we use for sampling.
        hidden_states = _prune_hidden_states(hidden_states, input_metadata)
Woosuk Kwon's avatar
Woosuk Kwon committed
43
44

        # Get the logits for the next tokens.
Woosuk Kwon's avatar
Woosuk Kwon committed
45
        logits = torch.matmul(hidden_states, embedding.t())
Zhuohan Li's avatar
Zhuohan Li committed
46
        logits = gather_from_tensor_model_parallel_region(logits)
47
        # Remove paddings in vocab (if any).
Woosuk Kwon's avatar
Woosuk Kwon committed
48
        logits = logits[:, :self.vocab_size]
Woosuk Kwon's avatar
Woosuk Kwon committed
49

50
51
52
53
54
55
56
57
58
59
        # Apply presence and frequency penalties.
        output_tokens = _get_output_tokens(input_metadata)
        assert len(output_tokens) == logits.shape[0]
        presence_penalties, frequency_penalties = _get_penalties(input_metadata)
        assert len(presence_penalties) == logits.shape[0]
        assert len(frequency_penalties) == logits.shape[0]
        logits = _apply_penalties(
            logits, output_tokens, presence_penalties, frequency_penalties,
            self.vocab_size)

60
61
62
63
64
65
66
67
68
        # Apply temperature scaling.
        temperatures = _get_temperatures(input_metadata)
        assert len(temperatures) == logits.shape[0]
        if any(t != 1.0 for t in temperatures):
            t = torch.tensor(
                temperatures, dtype=logits.dtype, device=logits.device)
            # Use in-place division to avoid creating a new tensor.
            logits.div_(t.unsqueeze(dim=1))

69
        # We use float32 for probabilities and log probabilities.
70
71
        # Compute the probabilities.
        probs = torch.softmax(logits, dim=-1, dtype=torch.float)
72
        # Compute the log probabilities (before applying top-p and top-k).
73
        logprobs = torch.log(probs)
74

Woosuk Kwon's avatar
Woosuk Kwon committed
75
76
77
        # Apply top-p and top-k truncation.
        top_ps, top_ks = _get_top_p_top_k(input_metadata, self.vocab_size)
        assert len(top_ps) == len(top_ks) == probs.shape[0]
78
        if any(p < 1.0 - _SAMPLING_EPS for p in top_ps) or any(k != self.vocab_size for k in top_ks):
79
            probs = _apply_top_p_top_k(probs, top_ps, top_ks)
80

Woosuk Kwon's avatar
Woosuk Kwon committed
81
        # Sample the next tokens.
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
        return _sample(probs, logprobs, input_metadata)


def _prune_hidden_states(
    hidden_states: torch.Tensor,
    input_metadata: InputMetadata,
) -> torch.Tensor:
    start_idx = 0
    last_token_indicies: List[int] = []
    for prompt_len in input_metadata.prompt_lens:
        last_token_indicies.append(start_idx + prompt_len - 1)
        start_idx += prompt_len
    last_token_indicies.extend(
        range(start_idx, start_idx + input_metadata.num_generation_tokens))
    return hidden_states[last_token_indicies]


99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
def _get_penalties(
    input_metadata: InputMetadata,
) -> Tuple[List[float], List[float]]:
    # Collect the presence and frequency penalties.
    presence_penalties: List[float] = []
    frequency_penalties: List[float] = []
    for i, seq_group in enumerate(input_metadata.seq_groups):
        seq_ids, sampling_params = seq_group
        p = sampling_params.presence_penalty
        f = sampling_params.frequency_penalty
        if i < input_metadata.num_prompts:
            # A prompt input.
            presence_penalties.append(p)
            frequency_penalties.append(f)
        else:
            # A generation token.
            presence_penalties += [p] * len(seq_ids)
            frequency_penalties += [f] * len(seq_ids)
    return presence_penalties, frequency_penalties


def _get_output_tokens(
    input_metadata: InputMetadata,
) -> List[List[int]]:
    output_tokens: List[List[int]] = []
    for i, seq_group in enumerate(input_metadata.seq_groups):
        seq_ids, _ = seq_group
        if i < input_metadata.num_prompts:
            # A prompt input.
            # NOTE: While the prompt input usually has no output tokens,
            # it may have output tokens in the case of recomputation.
            seq_id = seq_ids[0]
            seq_data = input_metadata.seq_data[seq_id]
            output_tokens.append(seq_data.output_token_ids)
        else:
            # A generation token.
            for seq_id in seq_ids:
                seq_data = input_metadata.seq_data[seq_id]
                output_tokens.append(seq_data.output_token_ids)
    return output_tokens


def _apply_penalties(
    logits: torch.Tensor,
    output_tokens: List[List[int]],
    presence_penalties: List[float],
    frequency_penalties: List[float],
    vocab_size: int,
) -> torch.Tensor:
    num_seqs = logits.shape[0]
    # Collect the indices of sequences that have non-zero penalties.
    indices = []
    for i in range(num_seqs):
        if not output_tokens[i]:
            continue
        p = presence_penalties[i]
        f = frequency_penalties[i]
156
        if p < _SAMPLING_EPS and f < _SAMPLING_EPS:
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
            continue
        indices.append(i)

    # Return early if all sequences have zero penalties.
    if not indices:
        return logits

    bin_counts = []
    for i in indices:
        bin_counts.append(np.bincount(output_tokens[i], minlength=vocab_size))
    bin_counts = np.stack(bin_counts, axis=0)
    bin_counts = torch.from_numpy(bin_counts).to(dtype=logits.dtype,
                                                 device=logits.device)

    frequency_penalties = [frequency_penalties[i] for i in indices]
    frequency_penalties = torch.tensor(
        frequency_penalties, dtype=logits.dtype, device=logits.device)
    presence_penalties = [presence_penalties[i] for i in indices]
    presence_penalties = torch.tensor(
        presence_penalties, dtype=logits.dtype, device=logits.device)

    # We follow the definition in OpenAI API.
    # Refer to https://platform.openai.com/docs/api-reference/parameter-details
    logits[indices] -= frequency_penalties.unsqueeze(dim=1) * bin_counts
    presence_mask = (bin_counts > 0.0).to(dtype=logits.dtype)
    logits[indices] -= presence_penalties.unsqueeze(dim=1) * presence_mask
    return logits


186
187
188
189
190
191
192
193
def _get_temperatures(
    input_metadata: InputMetadata,
) -> List[float]:
    # Collect the temperatures for the logits.
    temperatures: List[float] = []
    for i, seq_group in enumerate(input_metadata.seq_groups):
        seq_ids, sampling_params = seq_group
        temperature = sampling_params.temperature
194
        if temperature < _SAMPLING_EPS:
195
196
197
198
199
200
201
202
203
204
205
206
207
208
            # NOTE: Zero temperature means deterministic sampling
            # (i.e., greedy sampling or beam search).
            # Set the temperature to 1 to avoid division by zero.
            temperature = 1.0

        if i < input_metadata.num_prompts:
            # A prompt input.
            temperatures.append(temperature)
        else:
            # A generation token.
            temperatures += [temperature] * len(seq_ids)
    return temperatures


Woosuk Kwon's avatar
Woosuk Kwon committed
209
def _get_top_p_top_k(
210
    input_metadata: InputMetadata,
Woosuk Kwon's avatar
Woosuk Kwon committed
211
212
    vocab_size: int,
) -> Tuple[List[float], List[int]]:
213
    top_ps: List[float] = []
Woosuk Kwon's avatar
Woosuk Kwon committed
214
    top_ks: List[int] = []
215
216
    for i, seq_group in enumerate(input_metadata.seq_groups):
        seq_ids, sampling_params = seq_group
Woosuk Kwon's avatar
Woosuk Kwon committed
217
218
219
220
221
        top_p = sampling_params.top_p
        # k should not be greater than the vocab size.
        top_k = min(sampling_params.top_k, vocab_size)
        # k=-1 means no truncation.
        top_k = vocab_size if top_k == -1 else top_k
222
223
        if i < input_metadata.num_prompts:
            # A prompt input.
Woosuk Kwon's avatar
Woosuk Kwon committed
224
225
            top_ps.append(top_p)
            top_ks.append(top_k)
226
227
        else:
            # A generation token.
Woosuk Kwon's avatar
Woosuk Kwon committed
228
229
230
            top_ps += [top_p] * len(seq_ids)
            top_ks += [top_k] * len(seq_ids)
    return top_ps, top_ks
231
232


Woosuk Kwon's avatar
Woosuk Kwon committed
233
def _apply_top_p_top_k(
234
    probs: torch.Tensor,
235
236
    top_ps: List[float],
    top_ks: List[int],
237
) -> torch.Tensor:
238
239
    p = torch.tensor(top_ps, dtype=probs.dtype, device=probs.device)
    k = torch.tensor(top_ks, dtype=torch.int, device=probs.device)
240
    probs_sort, probs_idx = probs.sort(dim=-1, descending=True)
Woosuk Kwon's avatar
Woosuk Kwon committed
241
242

    # Apply top-p.
243
    probs_sum = torch.cumsum(probs_sort, dim=-1)
Woosuk Kwon's avatar
Woosuk Kwon committed
244
245
246
247
248
249
250
251
252
253
254
    top_p_mask = (probs_sum - probs_sort) > p.unsqueeze(dim=1)
    probs_sort[top_p_mask] = 0.0

    # Apply top-k.
    # Create a mask for the top-k elements.
    top_k_mask = torch.arange(probs_idx.shape[-1], device=probs_idx.device)
    top_k_mask = top_k_mask.expand(probs_idx.shape[0], -1)
    top_k_mask = top_k_mask >= k.unsqueeze(dim=1)
    probs_sort[top_k_mask] = 0.0

    # Re-sort the probabilities.
255
256
257
258
259
260
261
    probs = torch.gather(
        probs_sort, dim=-1, index=torch.argsort(probs_idx, dim=-1))
    return probs


def _get_topk_logprobs(
    logprobs: torch.Tensor,
Zhuohan Li's avatar
Zhuohan Li committed
262
    num_logprobs: Optional[int],
263
) -> Dict[int, float]:
Zhuohan Li's avatar
Zhuohan Li committed
264
    if num_logprobs is None or num_logprobs == 0:
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
        return {}

    topk_logprobs, topk_ids = torch.topk(logprobs, num_logprobs)
    if num_logprobs == 1:
        topk_logprobs = [topk_logprobs.item()]
        topk_ids = [topk_ids.item()]
    else:
        topk_logprobs = topk_logprobs.tolist()
        topk_ids = topk_ids.tolist()

    token_to_logprob: Dict[int, float] = {}
    for token_id, logprob in zip(topk_ids, topk_logprobs):
        token_to_logprob[token_id] = logprob
    return token_to_logprob


def _sample_from_prompt(
    prob: torch.Tensor,
    sampling_params: SamplingParams,
) -> List[int]:
    if sampling_params.use_beam_search:
        # Beam search.
287
        beam_width = sampling_params.best_of
288
289
        _, next_token_ids = torch.topk(prob, beam_width)
        next_token_ids = next_token_ids.tolist()
290
    elif sampling_params.temperature < _SAMPLING_EPS:
291
        # Greedy sampling.
292
        assert sampling_params.best_of == 1
293
294
295
        next_token_id = torch.argmax(prob)
        next_token_ids = [next_token_id.item()]
    else:
Woosuk Kwon's avatar
Woosuk Kwon committed
296
        # Random sampling.
297
298
        # Sample `best_of` tokens for the prompt.
        num_seqs = sampling_params.best_of
299
        next_token_ids = torch.multinomial(
300
            prob, num_samples=num_seqs, replacement=True)
Woosuk Kwon's avatar
Woosuk Kwon committed
301
        next_token_ids = next_token_ids.tolist()
302
303
304
305
306
307
308
309
310
311
    return next_token_ids


def _sample_from_generation_tokens(
    seq_ids: List[int],
    probs: torch.Tensor,
    logprobs: torch.Tensor,
    seq_logprobs: List[float],
    sampling_params: SamplingParams,
) -> Tuple[List[int], List[int]]:
312
    # NOTE(woosuk): sampling_params.best_of can be greater than
313
314
315
316
317
318
319
320
321
322
323
324
    # len(seq_ids) because some sequences in the group might have
    # been already terminated.
    if sampling_params.use_beam_search:
        # Beam search.
        # Add cumulative logprobs for the sequences in the group.
        seq_logprobs = torch.tensor(
            seq_logprobs, dtype=torch.float, device=logprobs.device)
        logprobs = logprobs + seq_logprobs.unsqueeze(dim=1)

        vocab_size = logprobs.size(-1)
        beam_width = len(seq_ids)
        _, topk_ids = torch.topk(logprobs.flatten(), beam_width)
325
326
        topk_ids = topk_ids.tolist()
        seq_idx = [i // vocab_size for i in topk_ids]
327
        beam_seq_ids = [seq_ids[i] for i in seq_idx]
328
        token_ids = [i % vocab_size for i in topk_ids]
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346

        beam_outputs: Dict[int, Tuple[int, int]] = {}
        outstanding_beams: List[Tuple[int, int]] = []
        # If a beam survives, continue with it.
        for seq_id, token_id in zip(beam_seq_ids, token_ids):
            if seq_id not in beam_outputs:
                beam_outputs[seq_id] = (seq_id, token_id)
            else:
                outstanding_beams.append((seq_id, token_id))

        # If a beam is discarded, fork another beam.
        for seq_id in seq_ids:
            if seq_id not in beam_outputs:
                beam_outputs[seq_id] = outstanding_beams.pop()
        assert not outstanding_beams

        parent_seq_ids = [beam_outputs[seq_id][0] for seq_id in seq_ids]
        next_token_ids = [beam_outputs[seq_id][1] for seq_id in seq_ids]
347
    elif sampling_params.temperature < _SAMPLING_EPS:
348
349
350
        # Greedy sampling.
        assert len(seq_ids) == 1
        next_token_id = torch.argmax(probs, dim=-1)
351
        next_token_ids = [int(next_token_id.item())]
352
353
        parent_seq_ids = seq_ids
    else:
Woosuk Kwon's avatar
Woosuk Kwon committed
354
        # Random sampling.
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
        # Sample 1 token for each sequence in the group.
        next_token_ids = torch.multinomial(
            probs, num_samples=1, replacement=True)
        next_token_ids = next_token_ids.squeeze(dim=-1).tolist()
        parent_seq_ids = seq_ids
    return parent_seq_ids, next_token_ids


def _sample(
    probs: torch.Tensor,
    logprobs: torch.Tensor,
    input_metadata: InputMetadata,
) -> Dict[int, SequenceOutputs]:
    seq_outputs: Dict[int, SequenceOutputs] = {}

    # TODO(woosuk): Optimize.
    idx = 0
    for i, seq_group in enumerate(input_metadata.seq_groups):
        seq_ids, sampling_params = seq_group
        if i < input_metadata.num_prompts:
            # Generate the next tokens for a prompt input.
376
            assert len(seq_ids) == sampling_params.best_of
377
378
379
380
381
382
383
384
            prob = probs[idx]
            logprob = logprobs[idx]
            idx += 1

            # Sample the next tokens.
            next_token_ids = _sample_from_prompt(prob, sampling_params)
            # Get top-k log probabilities for the next tokens.
            next_logprobs = _get_topk_logprobs(
Woosuk Kwon's avatar
Woosuk Kwon committed
385
                logprob, sampling_params.logprobs)
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400

            # Build the output.
            for seq_id, next_token_id in zip(seq_ids, next_token_ids):
                output_logprobs = next_logprobs.copy()
                output_logprobs[next_token_id] = logprob[next_token_id].item()
                seq_outputs[seq_id] = SequenceOutputs(
                    seq_id, seq_id, next_token_id, output_logprobs)
        else:
            # Generate the next tokens for generation tokens.
            prob = probs[idx:idx + len(seq_ids)]
            logprob = logprobs[idx:idx + len(seq_ids)]
            idx += len(seq_ids)

            # Sample the next tokens.
            seq_logprobs = [
401
                input_metadata.seq_data[seq_id].cumulative_logprob
402
                for seq_id in seq_ids]
403
404
405
406
407
408
409
            parent_seq_ids, next_token_ids = _sample_from_generation_tokens(
                seq_ids, prob, logprob, seq_logprobs, sampling_params)

            # Get top-k log probabilities for the next tokens.
            next_logprobs: Dict[int, Dict[int, float]] = {}
            for i, seq_id in enumerate(seq_ids):
                next_logprobs[seq_id] = _get_topk_logprobs(
Woosuk Kwon's avatar
Woosuk Kwon committed
410
                    logprob[i], sampling_params.logprobs)
411
412
413
414
415
416
417
418
419
420
421
422
423

            # Build the output.
            for seq_id, parent_seq_id, next_token_id in zip(
                seq_ids, parent_seq_ids, next_token_ids):
                i = seq_ids.index(parent_seq_id)
                output_logprobs = next_logprobs[parent_seq_id].copy()
                output_logprobs[next_token_id] = logprob[i, next_token_id].item()
                seq_outputs[seq_id] = SequenceOutputs(
                    seq_id,
                    parent_seq_id,
                    next_token_id,
                    output_logprobs,
                )
Woosuk Kwon's avatar
Woosuk Kwon committed
424

425
    return seq_outputs