- 24 Jun, 2022 1 commit
-
-
Vasilis Vryniotis authored
* Adding MViT v2 architecture (#6105) * Adding mvitv2 architecture * Fixing memory issues on tests and minor refactorings. * Adding input validation * Adding docs and minor refactoring * Add `min_temporal_size` in the supported meta-data. * Switch Tuple[int, int, int] with List[int] to support easier the 2D case * Adding more docs and references * Change naming conventions of classes to follow the same pattern as MobileNetV3 * Fix test breakage. * Update todos * Performance optimizations. * Add support to MViT v1 (#6179) * Switch implementation to v1 variant. * Fix docs * Adding back a v2 pseudovariant * Changing the way the network are configured. * Temporarily removing v2 * Adding weights. * Expand _squeeze/_unsqueeze to support arbitrary dims. * Update references script. * Fix tests. * Fixing frames and preprocessing. * Fix std/mean values in transforms. * Add permanent Dropout and update the weights. * Update accuracies. * Fix documentation * Remove unnecessary expected file. * Skip big model test * Rewrite the configuration logic to reduce LOC. * Fix mypy
-
- 14 Jun, 2022 1 commit
-
-
Nicolas Hug authored
* Add new .. betastatus:: directive to document Beta APIs * Also add it for the fine-grained video API * Add directive for all builders and pages of Detection module * Also segmentation and video models
-
- 23 May, 2022 1 commit
-
-
Vasilis Vryniotis authored
* Remove `(N, T, H, W, C) => (N, T, C, H, W)` conversion on presets * Update docs. * Fix the tests * Use `output_format` for `read_video()` * Use `output_format` for `Kinetics()` * Adding input descriptions on presets
-
- 19 May, 2022 1 commit
-
-
Nicolas Hug authored
* Remove models.rst * Remove '- New' * Put back torchhub section where it originally was
-
- 09 May, 2022 1 commit
-
-
YosuaMichael authored
* Add resnext101_64x4d model definition * Add test for resnext101_64x4d * Add resnext101_64x4d weight * Update checkpoint to use EMA weigth * Add quantization model signature for resnext101_64x4d * Fix class name and update accuracy using 1 gpu and batch_size=1 * Apply ufmt * Update the quantized weight and accuracy that we still keep the training log * Add quantized expect file * Update docs and fix acc1 * Add recipe for quantized to PR * Update models.rst
-
- 03 May, 2022 1 commit
-
-
Aditya Oke authored
* Add inception * Fix googlenet bug * Fix bug add file * Update torchvision/models/inception.py Co-authored-by:Nicolas Hug <contact@nicolas-hug.com>
-
- 28 Apr, 2022 1 commit
-
-
YosuaMichael authored
* Add shufflenetv2 1.5 and 2.0 weights * Update recipe * Add to docs * Use resize_size=232 for eval and update the result * Add quantized shufflenetv2 large * Update docs and readme * Format with ufmt * Add to hubconf.py * Update readme for classification reference * Fix reference classification readme * Fix typo on readme * Update reference/classification/readme
-
- 27 Apr, 2022 1 commit
-
-
Hu Ye authored
* add swin transformer * Update swin_transformer.py * Update swin_transformer.py * fix lint * fix lint * refactor code * add swin_transformer * Update swin_transformer.py * fix bug * refactor code * fix lint * update init_weights * move shift_window into attention * refactor code * fix bug * Update swin_transformer.py * Update swin_transformer.py * fix lint * add patch_merge * fix bug * Update swin_transformer.py * Update swin_transformer.py * Update swin_transformer.py * refactor code * Update swin_transformer.py * refactor code * fix lint * refactor code * add swin_tiny * add swin_tiny.pkl * fix lint * Delete ModelTester.test_swin_tiny_expect.pkl * add swin_tiny * add * add Optional to bias * update init weights * update init_weights and add no weight decay * add no weight decay * add set_weight_decay * add set_weight_decay * fix lint * fix lint * add lr_cos_min * add other swin models * Update torchvision/models/swin_transformer.py Co-authored-by:
Vasilis Vryniotis <datumbox@users.noreply.github.com> * refactor doc * Update utils.py * Update train.py * Update train.py * Update swin_transformer.py * update model builder * fix lint * add * Update torchvision/models/swin_transformer.py Co-authored-by:
Vasilis Vryniotis <datumbox@users.noreply.github.com> * Update torchvision/models/swin_transformer.py Co-authored-by:
Vasilis Vryniotis <datumbox@users.noreply.github.com> * update other model * simplify the model name just like ViT * add lr_cos_min * fix lint * fix lint * Update swin_transformer.py * Update swin_transformer.py * Update swin_transformer.py * Delete ModelTester.test_swin_tiny_expect.pkl * add swin_t * refactor code * Update train.py * add swin_s * ignore a error of mypy * Update swin_transformer.py * fix lint * add swin_b * add swin_l * refactor code * Update train.py * move relative_position_bias to __init__ * fix formatting * Revert "fix formatting" This reverts commit 41faba232668f7ac4273a0cf632c0d0130c7ce9c. * Revert "move relative_position_bias to __init__" This reverts commit f0615440bf18617dc0e5dc4839bd5ed27e5ed010. * refactor code * Remove deprecated meta-data from `_COMMON_META` * fix linter * add pretrained weights for swin_t * fix format * apply ufmt * add documentation * update references README * adding new style docs * update pre-trained weights values * remove other variants * fix typo * Remove expect for the variants not yet supported Co-authored-by:
Vasilis Vryniotis <datumbox@users.noreply.github.com> Co-authored-by:
Joao Gomes <jdsgomes@fb.com>
-
- 05 Apr, 2022 1 commit
-
-
YosuaMichael authored
* Add vit_b_16_swag * Better handling idiom for image_size, edit test_extended_model to handle case where number of param differ from default due to different image size input * Update the accuracy to the experiment result on torchvision model * Fix typo missing underscore * raise exception instead of torch._assert, add back publication year (accidentally deleted) * Add license information on meta and readme * Improve wording and fix typo for pretrained model license in readme * Add vit_l_16 weight * Update README.rst Co-authored-by:
Vasilis Vryniotis <datumbox@users.noreply.github.com> * Update the accuracy meta on vit_l_16_swag model to result from our experiment * Add vit_h_14_swag model * Add accuracy from experiments * Add to vit_h_16 model to hubconf.py * Add docs and expected pkl file for test * Remove legacy compatibility for ViT_H_14 model Co-authored-by:
Vasilis Vryniotis <datumbox@users.noreply.github.com> * Test vit_h_14 with smaller image_size to speedup the test Co-authored-by:
Vasilis Vryniotis <datumbox@users.noreply.github.com>
-
- 23 Mar, 2022 1 commit
-
-
XiaobingZhang authored
Co-authored-by:Vasilis Vryniotis <datumbox@users.noreply.github.com>
-
- 22 Mar, 2022 1 commit
-
-
Vasilis Vryniotis authored
* Moving basefiles outside of prototype and porting Alexnet, ConvNext, Densenet and EfficientNet. * Porting googlenet * Porting inception * Porting mnasnet * Porting mobilenetv2 * Porting mobilenetv3 * Porting regnet * Porting resnet * Porting shufflenetv2 * Porting squeezenet * Porting vgg * Porting vit * Fix docstrings * Fixing imports * Adding missing import * Fix mobilenet imports * Fix tests * Fix prototype tests * Exclude get_weight from models on test * Fix init files * Porting googlenet * Porting inception * porting mobilenetv2 * porting mobilenetv3 * porting resnet * porting shufflenetv2 * Fix test and linter * Fixing docs. * Porting Detection models (#5617) * fix inits * fix docs * Port faster_rcnn * Port fcos * Port keypoint_rcnn * Port mask_rcnn * Port retinanet * Port ssd * Port ssdlite * Fix linter * Fixing tests * Fixing tests * Fixing vgg test * Porting Optical Flow, Segmentation, Video models (#5619) * Porting raft * Porting video resnet * Porting deeplabv3 * Porting fcn and lraspp * Fixing the tests and linter * Porting docs, examples, tutorials and galleries (#5620) * Fix examples, tutorials and gallery * Update gallery/plot_optical_flow.py Co-authored-by:
Nicolas Hug <contact@nicolas-hug.com> * Fix import * Revert hardcoded normalization * fix uncommitted changes * Fix bug * Fix more bugs * Making resize optional for segmentation * Fixing preset * Fix mypy * Fixing documentation strings * Fix flake8 * minor refactoring Co-authored-by:
Nicolas Hug <contact@nicolas-hug.com> * Resolve conflict * Porting model tests (#5622) * Porting tests * Remove unnecessary variable * Fix linter * Move prototype to extended tests * Fix download models job * Update CI on Multiweight branch to use the new weight download approach (#5628) * port Pad to prototype transforms (#5621) * port Pad to prototype transforms * use literal * Bump up LibTorchvision version number for Podspec to release Cocoapods (#5624) Co-authored-by:
Anton Thomma <anton@pri.co.nz> Co-authored-by:
Vasilis Vryniotis <datumbox@users.noreply.github.com> * pre-download model weights in CI docs build (#5625) * pre-download model weights in CI docs build * move changes into template * change docs image * Regenerated config.yml Co-authored-by:
Philip Meier <github.pmeier@posteo.de> Co-authored-by:
Anton Thomma <11010310+thommaa@users.noreply.github.com> Co-authored-by:
Anton Thomma <anton@pri.co.nz> * Porting reference scripts and updating presets (#5629) * Making _preset.py classes * Remove support of targets on presets. * Rewriting the video preset * Adding tests to check that the bundled transforms are JIT scriptable * Rename all presets from *Eval to *Inference * Minor refactoring * Remove --prototype and --pretrained from reference scripts * remove pretained_backbone refs * Corrections and simplifications * Fixing bug * Fixing linter * Fix flake8 * restore documentation example * minor fixes * fix optical flow missing param * Fixing commands * Adding weights_backbone support in detection and segmentation * Updating the commands for InceptionV3 * Setting `weights_backbone` to its fully BC value (#5653) * Replace default `weights_backbone=None` with its BC values. * Fixing tests * Fix linter * Update docs. * Update preprocessing on reference scripts. * Change qat/ptq to their full values. * Refactoring preprocessing * Fix video preset * No initialization on VGG if pretrained * Fix warning messages for backbone utils. * Adding star to all preset constructors. * Fix mypy. Co-authored-by:
Nicolas Hug <contact@nicolas-hug.com> Co-authored-by:
Philip Meier <github.pmeier@posteo.de> Co-authored-by:
Anton Thomma <11010310+thommaa@users.noreply.github.com> Co-authored-by:
Anton Thomma <anton@pri.co.nz>
-
- 04 Mar, 2022 1 commit
-
-
Vasilis Vryniotis authored
* Remove from models and references. * Adding most tests and docs. * Adding transforms tests. * Remove unnecesary ipython notebook. * Simplify tests. * Addressing comments.
-
- 02 Mar, 2022 1 commit
-
-
Vasilis Vryniotis authored
* Extend the EfficientNet class to support v1 and v2. * Refactor config/builder methods and add prototype builders * Refactoring weight info. * Update dropouts based on TF config ref * Update BN eps on TF base_config * Use Conv2dNormActivation. * Adding pre-trained weights for EfficientNetV2-s * Add Medium and Large weights * Update stats with single batch run. * Add accuracies in the docs.
-
- 01 Feb, 2022 2 commits
-
-
Vasilis Vryniotis authored
* Graduate ConvNeXt to main TorchVision area. * Linter and all var. * Renaming var and making named params mandatory.
-
Vasilis Vryniotis authored
* Refactor model builder * Add 3 more convnext variants. * Adding weights for convnext_small. * Fix minor bug. * Fix number of parameters for small model. * Adding weights for the base variant. * Adding weights for the large variant. * Simplify LayerNorm2d implementation. * Optimize speed of CNBlock. * Repackage weights.
-
- 23 Jan, 2022 1 commit
-
-
Vasilis Vryniotis authored
-
- 21 Jan, 2022 1 commit
-
-
Hu Ye authored
* add fcos * update fcos * add giou_loss * add BoxLinearCoder for FCOS * add full code for FCOS * add giou loss * add fcos * add __all__ * Fixing lint * Fixing lint in giou_loss.py * Add typing annotation to fcos * Add trained checkpoints * Use partial to replace lambda * Minor fixes to docstrings * Apply ufmt format * Fixing docstrings * Fixing jit scripting * Minor fixes to docstrings * Fixing jit scripting * Ignore mypy in fcos * Fixing trained checkpoints * Fixing unit-test of jit script * Fixing docstrings * Add test/expect/ModelTester.test_fcos_resnet50_fpn_expect.pkl * Fixing test_detection_model_trainable_backbone_layers * Update test_fcos_resnet50_fpn_expect.pkl * rename stride to box size * remove TODO and fix some typo * merge some code for better * impove the comments * remove decode and encode of BoxLinearCoder * remove some unnecessary hints * use the default value in detectron2. * update doc * Add unittest for BoxLinearCoder * Add types in FCOS * Add docstring for BoxLinearCoder * Minor fix for the docstring * update doc * Update fcos_resnet50_fpn_coco pretained weights url * Update torchvision/models/detection/fcos.py Co-authored-by:
Vasilis Vryniotis <datumbox@users.noreply.github.com> * Update torchvision/models/detection/fcos.py Co-authored-by:
Vasilis Vryniotis <datumbox@users.noreply.github.com> * Update torchvision/models/detection/fcos.py Co-authored-by:
Vasilis Vryniotis <datumbox@users.noreply.github.com> * Update torchvision/models/detection/fcos.py Co-authored-by:
Vasilis Vryniotis <datumbox@users.noreply.github.com> * Add FCOS model documentation * Fix typo in FCOS documentation * Add fcos to the prototype builder * Capitalize COCO_V1 * Fix params of fcos * fix bug for partial * Fixing docs indentation * Fixing docs format in giou_loss * Adopt Reference for GIoU Loss * Rename giou_loss to generalized_box_iou_loss * remove overwrite_eps * Update AP test values * Minor fixes for the docs * Minor fixes for the docs * Update torchvision/models/detection/fcos.py Co-authored-by:
Zhiqiang Wang <zhiqwang@foxmail.com> * Update torchvision/prototype/models/detection/fcos.py Co-authored-by:
Zhiqiang Wang <zhiqwang@foxmail.com> Co-authored-by:
zhiqiang <zhiqwang@foxmail.com> Co-authored-by:
Joao Gomes <jdsgomes@fb.com> Co-authored-by:
Vasilis Vryniotis <datumbox@users.noreply.github.com> Co-authored-by:
Joao Gomes <joaopsgomes@gmail.com>
-
- 20 Jan, 2022 1 commit
-
-
Vasilis Vryniotis authored
* Adding CNBlock and skeleton architecture * Completed implementation. * Adding model in prototypes. * Add test and minor refactor for JIT. * Fix mypy. * Fixing naming conventions. * Fixing tests. * Fix stochastic depth percentages. * Adding stochastic depth to tiny variant. * Minor refactoring and adding comments. * Adding weights. * Update default weights. * Fix transforms issue * Move convnext to prototype. * linter fix * fix docs * Addressing code review comments.
-
- 19 Jan, 2022 1 commit
-
-
Yiwen Song authored
* adding vit_h_14 * prototype and docs * bug fix * adding curl check
-
- 13 Jan, 2022 1 commit
-
-
Kai Zhang authored
* add regnet_y_128gf * fix test * add expected test file * update regnet factory function, add to prototype as well * write torchscript to temp file instead bytesio in model test * docs * clear GPU memory * no_grad * nit Co-authored-by:Vasilis Vryniotis <datumbox@users.noreply.github.com>
-
- 10 Jan, 2022 1 commit
-
-
Yiwen Song authored
* graduate vit from prototype * nit * add vit to docs and hubconf * ufmt * re-correct ufmt * again * fix linter
-
- 06 Dec, 2021 1 commit
-
-
Nicolas Hug authored
-
- 12 Nov, 2021 1 commit
-
-
buckage authored
Co-authored-by:Vasilis Vryniotis <datumbox@users.noreply.github.com>
-
- 04 Nov, 2021 1 commit
-
-
Vasilis Vryniotis authored
* Clean up unnecessary quant builders and add quant weights for 0.5 * Fixing mypy.
-
- 03 Nov, 2021 1 commit
-
-
Stephen Matthews authored
* Fix TORCH_HOME environment variable in docs * Update docs with torch.hub Updated the reference for loading a model to `torch.hub`. Co-authored-by:
Nicolas Hug <contact@nicolas-hug.com> Co-authored-by:
Nicolas Hug <contact@nicolas-hug.com>
-
- 01 Nov, 2021 1 commit
-
-
Nicolas Hug authored
-
- 08 Oct, 2021 1 commit
-
-
Nicolas Hug authored
-
- 05 Oct, 2021 1 commit
-
-
Kai Zhang authored
* add best weights and x_1_6, x_3_2, y_1_6, y_3_2, y_32 weights * add best weights and x_1_6, x_3_2, y_1_6, y_3_2, y_32 weights * add weights for x_16gf, x_32gf, y_16gf
-
- 29 Sep, 2021 1 commit
-
-
Kai Zhang authored
* initial code * add SqueezeExcitation * initial code * add SqueezeExcitation * add SqueezeExcitation * regnet blocks, stems and model definition * nit * add fc layer * use Callable instead of Enum for block, stem and activation * add regnet_x and regnet_y model build functions, add docs * remove unused depth * use BN/activation constructor and ConvBNActivation * add expected test pkl files * allow custom activation in SqueezeExcitation * use ReLU as the default activation * initial code * add SqueezeExcitation * initial code * add SqueezeExcitation * add SqueezeExcitation * regnet blocks, stems and model definition * nit * add fc layer * use Callable instead of Enum for block, stem and activation * add regnet_x and regnet_y model build functions, add docs * remove unused depth * use BN/activation constructor and ConvBNActivation * reuse SqueezeExcitation from efficientnet * refactor RegNetParams into BlockParams * use nn.init, replace np with torch * update README * construct model with stem, block, classifier instances * Revert "construct model with stem, block, classifier instances" This reverts commit 850f5f3ed01a2a9b36fcbf8405afd6e41d2e58ef. * remove unused blocks * support scaled model * fuse into ConvBNActivation * make reset_parameters private * fix type errors * fix for unit test * add pretrained weights for 6 variant models, update docs
-
- 04 Sep, 2021 2 commits
-
-
Nicolas Hug authored
-
Saswat Das authored
Co-authored-by:Vasilis Vryniotis <datumbox@users.noreply.github.com>
-
- 26 Aug, 2021 1 commit
-
-
Vasilis Vryniotis authored
* Adding code skeleton * Adding MBConvConfig. * Extend SqueezeExcitation to support custom min_value and activation. * Implement MBConv. * Replace stochastic_depth with operator. * Adding the rest of the EfficientNet implementation * Update torchvision/models/efficientnet.py * Replacing 1st activation of SE with SiLU. * Adding efficientnet_b3. * Replace mobilenetv3 assets with custom. * Switch to standard sigmoid and reconfiguring BN. * Reconfiguration of efficientnet. * Add repr * Add weights. * Update weights. * Adding B5-B7 weights. * Update docs and hubconf. * Fix doc link. * Fix typo on comment.
-
- 22 May, 2021 1 commit
-
-
Vasilis Vryniotis authored
-
- 18 May, 2021 1 commit
-
-
Nicolas Hug authored
-
- 12 May, 2021 1 commit
-
-
Vasilis Vryniotis authored
-
- 11 May, 2021 1 commit
-
-
Vasilis Vryniotis authored
* Partial implementation of SSDlite. * Add normal init and BN hyperparams. * Refactor to keep JIT happy * Completed SSDlite. * Fix lint * Update todos * Add expected file in repo. * Use C4 expansion instead of C4 output. * Change scales formula for Default Boxes. * Add cosine annealing on trainer. * Make T_max count epochs. * Fix test and handle corner-case. * Add support of support width_mult * Add ssdlite presets. * Change ReLU6, [-1,1] rescaling, backbone init & no pretraining. * Use _reduced_tail=True. * Add sync BN support. * Adding the best config along with its weights and documentation. * Make mean/std configurable. * Fix not implemented for half exception
-
- 30 Apr, 2021 1 commit
-
-
Vasilis Vryniotis authored
* Early skeleton of API. * Adding MultiFeatureMap and vgg16 backbone. * Making vgg16 backbone same as paper. * Making code generic to support all vggs. * Moving vgg's extra layers a separate class + L2 scaling. * Adding header vgg layers. * Fix maxpool patching. * Refactoring code to allow for support of different backbones & sizes: - Skeleton for Default Boxes generator class - Dynamic estimation of configuration when possible - Addition of types * Complete the implementation of DefaultBox generator. * Replace randn with empty. * Minor refactoring * Making clamping between 0 and 1 optional. * Change xywh to xyxy encoding. * Adding parameters and reusing objects in constructor. * Temporarily inherit from Retina to avoid dup code. * Implement forward methods + temp workarounds to inherit from retina. * Inherit more methods from retinanet. * Fix type error. * Add Regression loss. * Fixing JIT issues. * Change JIT workaround to minimize new code. * Fixing initialization bug. * Add classification loss. * Update todos. * Add weight loading support. * Support SSD512. * Change kernel_size to get output size 1x1 * Add xavier init and refactoring. * Adding unit-tests and fixing JIT issues. * Add a test for dbox generator. * Remove unnecessary import. * Workaround on GeneralizedRCNNTransform to support fixed size input. * Remove unnecessary random calls from the test. * Remove more rand calls from the test. * change mapping and handling of empty labels * Fix JIT warnings. * Speed up loss. * Convert 0-1 dboxes to original size. * Fix warning. * Fix tests. * Update comments. * Fixing minor bugs. * Introduce a custom DBoxMatcher. * Minor refactoring * Move extra layer definition inside feature extractor. * handle no bias on init. * Remove fixed image size limitation * Change initialization values for bias of classification head. * Refactoring and update test file. * Adding ResNet backbone. * Minor refactoring. * Remove inheritance of retina and general refactoring. * SSD should fix the input size. * Fixing messages and comments. * Silently ignoring exception if test-only. * Update comments. * Update regression loss. * Restore Xavier init everywhere, update the negative sampling method, change the clipping approach. * Fixing tests. * Refactor to move the losses from the Head to the SSD. * Removing resnet50 ssd version. * Adding support for best performing backbone and its config. * Refactor and clean up the API. * Fix lint * Update todos and comments. * Adding RandomHorizontalFlip and RandomIoUCrop transforms. * Adding necessary checks to our tranforms. * Adding RandomZoomOut. * Adding RandomPhotometricDistort. * Moving Detection transforms to references. * Update presets * fix lint * leave compose and object * Adding scaling for completeness. * Adding params in the repr * Remove unnecessary import. * minor refactoring * Remove unnecessary call. * Give better names to DBox* classes * Port num_anchors estimation in generator * Remove rescaling and fix presets * Add the ability to pass a custom head and refactoring. * fix lint * Fix unit-test * Update todos. * Change mean values. * Change the default parameter of SSD to train the full VGG16 and remove the catch of exception for eval only. * Adding documentation * Adding weights and updating readmes. * Update the model weights with a more performing model. * Adding doc for head. * Restore import.
-
- 09 Feb, 2021 2 commits
-
-
Vasilis Vryniotis authored
-
Vasilis Vryniotis authored
* Adding TODO placeholders. * More placeholders. * Add MobileNetV3 small pre-trained weights. * Remove placeholders.
-
- 08 Feb, 2021 1 commit
-
-
Vasilis Vryniotis authored
-