1. 26 Jan, 2021 1 commit
  2. 18 Jan, 2021 1 commit
    • Vasilis Vryniotis's avatar
      Add MobileNetV3 architecture for Detection (#3253) · bf211dac
      Vasilis Vryniotis authored
      * Minor refactoring of a private method to make it reusuable.
      
      * Adding a FasterRCNN + MobileNetV3 with & w/o FPN models.
      
      * Reducing Resolution to 320-640 and anchor sizes to 16-256.
      
      * Increase anchor sizes.
      
      * Adding rpn score threshold param on the train script.
      
      * Adding trainable_backbone_layers param on the train script.
      
      * Adding rpn_score_thresh param directly in fasterrcnn_mobilenet_v3_large_fpn.
      
      * Remove fasterrcnn_mobilenet_v3_large prototype and update expected file.
      
      * Update documentation and adding weights.
      
      * Use buildin Identity.
      
      * Fix spelling.
      bf211dac
  3. 08 Jan, 2021 1 commit
  4. 22 Dec, 2020 1 commit
  5. 15 Dec, 2020 1 commit
  6. 30 Nov, 2020 1 commit
  7. 27 Nov, 2020 1 commit
  8. 03 Nov, 2020 1 commit
  9. 20 Oct, 2020 1 commit
  10. 14 Oct, 2020 2 commits
  11. 13 Oct, 2020 1 commit
    • Francisco Massa's avatar
      RetinaNet object detection (take 2) (#2784) · 5bb81c8e
      Francisco Massa authored
      
      
      * Add rough implementation of RetinaNet.
      
      * Move AnchorGenerator to a seperate file.
      
      * Move box similarity to Matcher.
      
      * Expose extra blocks in FPN.
      
      * Expose retinanet in __init__.py.
      
      * Use P6 and P7 in FPN for retinanet.
      
      * Use parameters from retinanet for anchor generation.
      
      * General fixes for retinanet model.
      
      * Implement loss for retinanet heads.
      
      * Output reshaped outputs from retinanet heads.
      
      * Add postprocessing of detections.
      
      * Small fixes.
      
      * Remove unused argument.
      
      * Remove python2 invocation of super.
      
      * Add postprocessing for additional outputs.
      
      * Add missing import of ImageList.
      
      * Remove redundant import.
      
      * Simplify class correction.
      
      * Fix pylint warnings.
      
      * Remove the label adjustment for background class.
      
      * Set default score threshold to 0.05.
      
      * Add weight initialization for regression layer.
      
      * Allow training on images with no annotations.
      
      * Use smooth_l1_loss with beta value.
      
      * Add more typehints for TorchScript conversions.
      
      * Fix linting issues.
      
      * Fix type hints in postprocess_detections.
      
      * Fix type annotations for TorchScript.
      
      * Fix inconsistency with matched_idxs.
      
      * Add retinanet model test.
      
      * Add missing JIT annotations.
      
      * Remove redundant model construction
      
      Make tests pass
      
      * Fix bugs during training on newer PyTorch and unused params in DDP
      
      Needs cleanup and to add back support for images with no annotations
      
      * Cleanup resnet_fpn_backbone
      
      * Use L1 loss for regression
      
      Gives 1mAP improvement over smooth l1
      
      * Disable support for images with no annotations
      
      Need to fix distributed first
      
      * Fix retinanet tests
      
      Need to deduplicate those box checks
      
      * Fix Lint
      
      * Add pretrained model
      
      * Add training info for retinanet
      Co-authored-by: default avatarHans Gaiser <hansg91@gmail.com>
      Co-authored-by: default avatarHans Gaiser <hans.gaiser@robovalley.com>
      Co-authored-by: default avatarHans Gaiser <hans.gaiser@robohouse.com>
      5bb81c8e