1. 28 Oct, 2021 1 commit
  2. 25 Oct, 2021 1 commit
  3. 20 Oct, 2021 1 commit
    • Vasilis Vryniotis's avatar
      Refactor the backbone builders of detection (#4656) · d18c4872
      Vasilis Vryniotis authored
      * Refactoring resnet_fpn backbone building.
      
      * Passing the change to *_rcnn and retinanet.
      
      * Applying for faster_rcnn + mobilenetv3
      
      * Applying for ssdlite + mobilenetv3
      
      * Applying for ssd + vgg16
      
      * Update the expected file of retinanet_resnet50_fpn to fix order of initialization.
      
      * Adding full model weights for the VGG16 features.
      d18c4872
  4. 04 Oct, 2021 1 commit
    • Philip Meier's avatar
      Add ufmt (usort + black) as code formatter (#4384) · 5f0edb97
      Philip Meier authored
      
      
      * add ufmt as code formatter
      
      * cleanup
      
      * quote ufmt requirement
      
      * split imports into more groups
      
      * regenerate circleci config
      
      * fix CI
      
      * clarify local testing utils section
      
      * use ufmt pre-commit hook
      
      * split relative imports into local category
      
      * Revert "split relative imports into local category"
      
      This reverts commit f2e224cde2008c56c9347c1f69746d39065cdd51.
      
      * pin black and usort dependencies
      
      * fix local test utils detection
      
      * fix ufmt rev
      
      * add reference utils to local category
      
      * fix usort config
      
      * remove custom categories sorting
      
      * Run pre-commit without fixing flake8
      
      * got a double import in merge
      Co-authored-by: default avatarNicolas Hug <nicolashug@fb.com>
      5f0edb97
  5. 08 Sep, 2021 1 commit
  6. 28 Jun, 2021 1 commit
  7. 22 Jun, 2021 1 commit
  8. 18 May, 2021 1 commit
  9. 16 Apr, 2021 1 commit
  10. 08 Apr, 2021 1 commit
  11. 22 Feb, 2021 1 commit
  12. 04 Feb, 2021 1 commit
  13. 26 Jan, 2021 1 commit
  14. 18 Jan, 2021 1 commit
    • Vasilis Vryniotis's avatar
      Add MobileNetV3 architecture for Detection (#3253) · bf211dac
      Vasilis Vryniotis authored
      * Minor refactoring of a private method to make it reusuable.
      
      * Adding a FasterRCNN + MobileNetV3 with & w/o FPN models.
      
      * Reducing Resolution to 320-640 and anchor sizes to 16-256.
      
      * Increase anchor sizes.
      
      * Adding rpn score threshold param on the train script.
      
      * Adding trainable_backbone_layers param on the train script.
      
      * Adding rpn_score_thresh param directly in fasterrcnn_mobilenet_v3_large_fpn.
      
      * Remove fasterrcnn_mobilenet_v3_large prototype and update expected file.
      
      * Update documentation and adding weights.
      
      * Use buildin Identity.
      
      * Fix spelling.
      bf211dac
  15. 08 Jan, 2021 1 commit
  16. 22 Dec, 2020 1 commit
  17. 15 Dec, 2020 1 commit
  18. 30 Nov, 2020 1 commit
  19. 27 Nov, 2020 1 commit
  20. 03 Nov, 2020 1 commit
  21. 20 Oct, 2020 1 commit
  22. 14 Oct, 2020 2 commits
  23. 13 Oct, 2020 1 commit
    • Francisco Massa's avatar
      RetinaNet object detection (take 2) (#2784) · 5bb81c8e
      Francisco Massa authored
      
      
      * Add rough implementation of RetinaNet.
      
      * Move AnchorGenerator to a seperate file.
      
      * Move box similarity to Matcher.
      
      * Expose extra blocks in FPN.
      
      * Expose retinanet in __init__.py.
      
      * Use P6 and P7 in FPN for retinanet.
      
      * Use parameters from retinanet for anchor generation.
      
      * General fixes for retinanet model.
      
      * Implement loss for retinanet heads.
      
      * Output reshaped outputs from retinanet heads.
      
      * Add postprocessing of detections.
      
      * Small fixes.
      
      * Remove unused argument.
      
      * Remove python2 invocation of super.
      
      * Add postprocessing for additional outputs.
      
      * Add missing import of ImageList.
      
      * Remove redundant import.
      
      * Simplify class correction.
      
      * Fix pylint warnings.
      
      * Remove the label adjustment for background class.
      
      * Set default score threshold to 0.05.
      
      * Add weight initialization for regression layer.
      
      * Allow training on images with no annotations.
      
      * Use smooth_l1_loss with beta value.
      
      * Add more typehints for TorchScript conversions.
      
      * Fix linting issues.
      
      * Fix type hints in postprocess_detections.
      
      * Fix type annotations for TorchScript.
      
      * Fix inconsistency with matched_idxs.
      
      * Add retinanet model test.
      
      * Add missing JIT annotations.
      
      * Remove redundant model construction
      
      Make tests pass
      
      * Fix bugs during training on newer PyTorch and unused params in DDP
      
      Needs cleanup and to add back support for images with no annotations
      
      * Cleanup resnet_fpn_backbone
      
      * Use L1 loss for regression
      
      Gives 1mAP improvement over smooth l1
      
      * Disable support for images with no annotations
      
      Need to fix distributed first
      
      * Fix retinanet tests
      
      Need to deduplicate those box checks
      
      * Fix Lint
      
      * Add pretrained model
      
      * Add training info for retinanet
      Co-authored-by: default avatarHans Gaiser <hansg91@gmail.com>
      Co-authored-by: default avatarHans Gaiser <hans.gaiser@robovalley.com>
      Co-authored-by: default avatarHans Gaiser <hans.gaiser@robohouse.com>
      5bb81c8e