- 28 Oct, 2021 1 commit
-
-
Jirka Borovec authored
Co-authored-by:Nicolas Hug <nicolashug@fb.com>
-
- 27 Oct, 2021 8 commits
-
-
Nicolas Hug authored
* setting 100 seeds * back to 10 seeds
-
Nicolas Hug authored
* Trying with 100 seeds * Change seeds from 100 to 10
-
Nicolas Hug authored
-
Vasilis Vryniotis authored
-
Vasilis Vryniotis authored
-
Nicolas Hug authored
* setting 100 seeds, let's see if it fails * Passed with 100, so setting 10
-
Nicolas Hug authored
* Change test_random_apply * Change test_random_choice * Change test_randomness * took care of RandomVert/HorizFlip * take care of RandomGrayScale * minor cleanup * avoid 0 degree rotation just in case
-
Vasilis Vryniotis authored
* Fix flakiness on the TestStochasticDepth test. * Fix minor bug when p=1.0 * Remove device and dtype setting.
-
- 26 Oct, 2021 2 commits
-
-
Vasilis Vryniotis authored
* Adding multi-weight support to LRASPP * Adding tests for segmentation models. * Skip segmentation test by default.
-
Vasilis Vryniotis authored
* Refactoring tests. * Fixing lint. * Skip tests for models that don't have weights.
-
- 25 Oct, 2021 2 commits
-
-
Vasilis Vryniotis authored
* Update model checkpoint for resnet50. * Add get_weight method to retrieve weights from name. * Update the references to support prototype weights. * Fixing mypy typing. * Switching to a python 3.6 supported equivalent. * Add unit-test. * Add optional num_classes.
-
Nicolas Hug authored
-
- 22 Oct, 2021 1 commit
-
-
Vasilis Vryniotis authored
* Update EMA every X iters. * Adding AdamW optimizer. * Adjusting EMA decay scheme. * Support custom weight decay for Normalization layers. * Fix identation bug. * Change EMA adjustment. * Quality of life changes to faciliate testing * ufmt format * Fixing imports. * Adding FixRes improvement. * Support EMA in store_model_weights. * Adding interpolation values. * Change train_crop_size. * Add interpolation option. * Removing hardcoded interpolation and sizes from the scripts. * Fixing linter. * Incorporating feedback from code review.
-
- 21 Oct, 2021 2 commits
-
-
Vasilis Vryniotis authored
-
Nicolas Hug authored
* WIP * cleaner code * Add tests * Add docs * Assert dtype * put back check * Address comments Co-authored-by:Francisco Massa <fvsmassa@gmail.com>
-
- 20 Oct, 2021 3 commits
-
-
Joao Gomes authored
* adding Weights classes for Resnet classification models * Replacing BasicBlock by Bottleneck in all but 3 model contructors * adding tests for prototype models * fixing typo in environment variable * Update test/test_prototype_models.py Co-authored-by:
Vasilis Vryniotis <datumbox@users.noreply.github.com> * changing default value for PYTORCH_TEST_WITH_PROTOTYPE * adding checks to compare outputs of the prototype vs old models * refactoring prototype tests * removing unused imports * applying ufmt * Update test/test_prototype_models.py Co-authored-by:
Vasilis Vryniotis <datumbox@users.noreply.github.com> * Update test/test_prototype_models.py Co-authored-by:
Vasilis Vryniotis <datumbox@users.noreply.github.com> * Update test/test_prototype_models.py Co-authored-by:
Vasilis Vryniotis <datumbox@users.noreply.github.com> * Update test/test_prototype_models.py Co-authored-by:
Vasilis Vryniotis <datumbox@users.noreply.github.com> * Update test/test_prototype_models.py Co-authored-by:
Vasilis Vryniotis <datumbox@users.noreply.github.com> * Update test/test_prototype_models.py Co-authored-by:
Vasilis Vryniotis <datumbox@users.noreply.github.com> * Update test/test_prototype_models.py Co-authored-by:
Vasilis Vryniotis <datumbox@users.noreply.github.com> Co-authored-by:
Vasilis Vryniotis <datumbox@users.noreply.github.com>
-
Vasilis Vryniotis authored
* Refactoring resnet_fpn backbone building. * Passing the change to *_rcnn and retinanet. * Applying for faster_rcnn + mobilenetv3 * Applying for ssdlite + mobilenetv3 * Applying for ssd + vgg16 * Update the expected file of retinanet_resnet50_fpn to fix order of initialization. * Adding full model weights for the VGG16 features.
-
Philip Meier authored
* add CI job for prototype tests * register prototype job * fix torchvision installation * fix test invocation * ignore prototype tests in normal unittests Co-authored-by:Vasilis Vryniotis <datumbox@users.noreply.github.com>
-
- 19 Oct, 2021 1 commit
-
-
Nicolas Hug authored
-
- 18 Oct, 2021 1 commit
-
-
Joao Gomes authored
* adding test for trainable paramters in detection models * modifying range of trainable layers Co-authored-by:Vasilis Vryniotis <datumbox@users.noreply.github.com>
-
- 13 Oct, 2021 1 commit
-
-
Joao Gomes authored
* adding tests to check output of quantized models * adding test quantized model weights * merge test_new_quantized_classification_model with test_quantized_classification_model * adding skipif removed by mistake * addressing comments from PR * removing unused argument * fixing lint errors * changing model to eval model and updating weights * Update test/test_models.py Co-authored-by:
Vasilis Vryniotis <datumbox@users.noreply.github.com> * enforce single test in circleci * changing random seed * updating weights for new seed * adding missing empty line * try 128 random seed * try 256 random seed * try 16 random seed * disable inception_v3 input/output quantization tests * removing ModelTester.test_inception_v3_quantized_expect.pkl * reverting temporary ci run_test.sh changes Co-authored-by:
Vasilis Vryniotis <datumbox@users.noreply.github.com>
-
- 08 Oct, 2021 1 commit
-
-
Sergii Khomenko authored
Co-authored-by:Prabhat Roy <prabhatroy@fb.com>
-
- 05 Oct, 2021 1 commit
-
-
Aditya Oke authored
* Add str param * Update test to include str * Fix mypy * Remove a small bracket * Test more robustly * Update docstring and test: * Apply suggestions from code review Co-authored-by:
Nicolas Hug <contact@nicolas-hug.com> * Update torchvision/utils.py Small docstring fix * Update torchvision/utils.py * remove unnecessary renaming Co-authored-by:
Nicolas Hug <contact@nicolas-hug.com> Co-authored-by:
Nicolas Hug <nicolashug@fb.com>
-
- 04 Oct, 2021 2 commits
-
-
Nicolas Hug authored
-
Philip Meier authored
* add ufmt as code formatter * cleanup * quote ufmt requirement * split imports into more groups * regenerate circleci config * fix CI * clarify local testing utils section * use ufmt pre-commit hook * split relative imports into local category * Revert "split relative imports into local category" This reverts commit f2e224cde2008c56c9347c1f69746d39065cdd51. * pin black and usort dependencies * fix local test utils detection * fix ufmt rev * add reference utils to local category * fix usort config * remove custom categories sorting * Run pre-commit without fixing flake8 * got a double import in merge Co-authored-by:Nicolas Hug <nicolashug@fb.com>
-
- 01 Oct, 2021 1 commit
-
-
Alexander Soare authored
* draft commit * Polish and add corresponding test * Update docs * Update torchvision/models/feature_extraction.py * Update docs/source/feature_extraction.rst Co-authored-by:Francisco Massa <fvsmassa@gmail.com>
-
- 29 Sep, 2021 3 commits
-
-
Kai Zhang authored
* initial code * add SqueezeExcitation * initial code * add SqueezeExcitation * add SqueezeExcitation * regnet blocks, stems and model definition * nit * add fc layer * use Callable instead of Enum for block, stem and activation * add regnet_x and regnet_y model build functions, add docs * remove unused depth * use BN/activation constructor and ConvBNActivation * add expected test pkl files * allow custom activation in SqueezeExcitation * use ReLU as the default activation * initial code * add SqueezeExcitation * initial code * add SqueezeExcitation * add SqueezeExcitation * regnet blocks, stems and model definition * nit * add fc layer * use Callable instead of Enum for block, stem and activation * add regnet_x and regnet_y model build functions, add docs * remove unused depth * use BN/activation constructor and ConvBNActivation * reuse SqueezeExcitation from efficientnet * refactor RegNetParams into BlockParams * use nn.init, replace np with torch * update README * construct model with stem, block, classifier instances * Revert "construct model with stem, block, classifier instances" This reverts commit 850f5f3ed01a2a9b36fcbf8405afd6e41d2e58ef. * remove unused blocks * support scaled model * fuse into ConvBNActivation * make reset_parameters private * fix type errors * fix for unit test * add pretrained weights for 6 variant models, update docs
-
Nicolas Hug authored
* Add autouse fixture to save and reset RNG in tests * Add other RNG generators * delete freeze_rng_state * Hopefully fix GaussianBlur test * Alternative fix, probably better * revert changes to test_models Co-authored-by:Francisco Massa <fvsmassa@gmail.com>
-
Aditya Oke authored
Co-authored-by:Francisco Massa <fvsmassa@gmail.com>
-
- 27 Sep, 2021 1 commit
-
-
Loi Ly authored
* update channels parameter to every calling to check_functional_vs_PIL_vs_scripted * update adjust_saturation * update docstrings for functional transformations * parametrize channels * update docstring of ColorJitter class * move channels to class's parameter * remove testing channels for geometric transforms * revert redundant changes * revert redundant changes * update grayscale test cases for randaugment, autoaugment, trivialaugment * update docstrings of randaugment, autoaugment, trivialaugment * update docstring of ColorJitter * fix adjust_hue's docstring * change test equal tolerance * refactor grayscale tests * make get_grayscale_test_image private
-
- 24 Sep, 2021 3 commits
-
-
vfdev authored
Description: - Removed tests executing deprecated F_t.center/five/ten_crop methods - Suppressed deprecation warnings while running test/test_functional_tensor.py
-
vfdev authored
-
Aditya Oke authored
Co-authored-by:Nicolas Hug <nicolashug@fb.com>
-
- 21 Sep, 2021 3 commits
-
-
Philip Meier authored
* make tests that involve GDrive more robust * fix expected IDs Co-authored-by:Vasilis Vryniotis <datumbox@users.noreply.github.com>
-
Allen Goodman authored
* ops.masks_to_bounding_boxes * test fixtures * unit test * ignore lint e201 and e202 for in-lined matrix * ignore e121 and e241 linting rules for in-lined matrix * draft gallery example text * removed type annotations from pytest fixtures * inlined fixture * renamed masks_to_bounding_boxes to masks_to_boxes * reformat inline array * import cleanup * moved masks_to_boxes into boxes module * docstring cleanup * updated docstring * fix formatting issue * gallery example * use torch * use torch * use torch * use torch * updated docs and test * cleanup * updated import * use torch * Update gallery/plot_repurposing_annotations.py Co-authored-by:
Aditya Oke <47158509+oke-aditya@users.noreply.github.com> * Update gallery/plot_repurposing_annotations.py Co-authored-by:
Aditya Oke <47158509+oke-aditya@users.noreply.github.com> * Update gallery/plot_repurposing_annotations.py Co-authored-by:
Aditya Oke <47158509+oke-aditya@users.noreply.github.com> * Autodoc * use torch instead of numpy in tests * fix build_docs failure * Closing quotes. Co-authored-by:
Vasilis Vryniotis <datumbox@users.noreply.github.com> Co-authored-by:
Aditya Oke <47158509+oke-aditya@users.noreply.github.com>
-
Beat Buesser authored
* Allow gradient backpropagation through GeneralizedRCNNTransform to inputs Signed-off-by:
Beat Buesser <beat.buesser@ie.ibm.com> * Add unit tests for gradient backpropagation to inputs Signed-off-by:
Beat Buesser <beat.buesser@ie.ibm.com> * Update torchvision/models/detection/transform.py Co-authored-by:
Francisco Massa <fvsmassa@gmail.com> * Update _check_input_backprop Signed-off-by:
Beat Buesser <beat.buesser@ie.ibm.com> * Account for tests requiring cuda Signed-off-by:
Beat Buesser <beat.buesser@ie.ibm.com> Co-authored-by:
Francisco Massa <fvsmassa@gmail.com> Co-authored-by:
Vasilis Vryniotis <datumbox@users.noreply.github.com>
-
- 16 Sep, 2021 1 commit
-
-
Prabhat Roy authored
* Skip building torchvision with ffmpeg when python==3.9 * Add FIXME to comments
-
- 15 Sep, 2021 1 commit
-
-
Vasilis Vryniotis authored
* Add RandomMixupCutmix. * Add test with real data. * Use dataloader and collate in the test. * Making RandomMixupCutmix JIT scriptable. * Move out label_smoothing and try roll instead of flip * Adding mixup/cutmix in references script. * Handle one-hot encoded target in accuracy. * Add support of devices on tests. * Separate Mixup from Cutmix. * Add check for floats. * Adding device on expect value. * Remove hardcoded weights. * One-hot only when necessary. * Fix linter. * Moving mixup and cutmix to references. * Final code clean up.
-
- 14 Sep, 2021 1 commit
-
-
Muhammed Abdullah authored
* Added LFW Dataset * Added dataset to list in __init__.py * Updated lfw.py * Created a common superclass for people and pairs type datatsets * corrected the .download() method * Added docstrings and updated datasets.rst * Wrote tests for LFWPeople and LFWPairs * Resolved mypy error: Need type annotation for "data" * Updated inject_fake_data method for LFWPeople * Updated tests for LFW * Updated LFW tests and minor changes in lfw.py * Updated LFW * Added functionality for 10-fold validation view * Optimized the code so to replace repeated lines by method in super class * Updated LFWPeople to get classes from all lfw-names.txt rather than just the classes fron trainset * Updated lfw.py and tests * Updated inject_fake_data method to create 10fold fake data * Minor changes in docstring and extra_repr * resolved py lint errors * Added checksums for annotation files * Minor changes in test * Updated docstrings, defaults and minor changes in test * Removed 'os.path.exists' check Co-authored-by:
ABD-01 <myac931@gmai.com> Co-authored-by:
Philip Meier <github.pmeier@posteo.de> Co-authored-by:
Francisco Massa <fvsmassa@gmail.com>
-