- 02 Feb, 2022 1 commit
-
-
Vasilis Vryniotis authored
* Add is_qat support using a method getter * Switch to an internal _fuse_modules * Fix linter. * Pass is_qat=False on PTQ * Fix bug on ra_sampler flag. * Set is_qat=True for QAT
-
- 29 Jan, 2022 1 commit
-
-
Yiwen Song authored
* Adding conv_stem support * fix lint * bug fix * address comments * fix after merge * adding back checking lines * fix failing tests * fix iignore * add unittest & address comments * fix memory issue * address comments
-
- 21 Jan, 2022 1 commit
-
-
Hu Ye authored
* add fcos * update fcos * add giou_loss * add BoxLinearCoder for FCOS * add full code for FCOS * add giou loss * add fcos * add __all__ * Fixing lint * Fixing lint in giou_loss.py * Add typing annotation to fcos * Add trained checkpoints * Use partial to replace lambda * Minor fixes to docstrings * Apply ufmt format * Fixing docstrings * Fixing jit scripting * Minor fixes to docstrings * Fixing jit scripting * Ignore mypy in fcos * Fixing trained checkpoints * Fixing unit-test of jit script * Fixing docstrings * Add test/expect/ModelTester.test_fcos_resnet50_fpn_expect.pkl * Fixing test_detection_model_trainable_backbone_layers * Update test_fcos_resnet50_fpn_expect.pkl * rename stride to box size * remove TODO and fix some typo * merge some code for better * impove the comments * remove decode and encode of BoxLinearCoder * remove some unnecessary hints * use the default value in detectron2. * update doc * Add unittest for BoxLinearCoder * Add types in FCOS * Add docstring for BoxLinearCoder * Minor fix for the docstring * update doc * Update fcos_resnet50_fpn_coco pretained weights url * Update torchvision/models/detection/fcos.py Co-authored-by:
Vasilis Vryniotis <datumbox@users.noreply.github.com> * Update torchvision/models/detection/fcos.py Co-authored-by:
Vasilis Vryniotis <datumbox@users.noreply.github.com> * Update torchvision/models/detection/fcos.py Co-authored-by:
Vasilis Vryniotis <datumbox@users.noreply.github.com> * Update torchvision/models/detection/fcos.py Co-authored-by:
Vasilis Vryniotis <datumbox@users.noreply.github.com> * Add FCOS model documentation * Fix typo in FCOS documentation * Add fcos to the prototype builder * Capitalize COCO_V1 * Fix params of fcos * fix bug for partial * Fixing docs indentation * Fixing docs format in giou_loss * Adopt Reference for GIoU Loss * Rename giou_loss to generalized_box_iou_loss * remove overwrite_eps * Update AP test values * Minor fixes for the docs * Minor fixes for the docs * Update torchvision/models/detection/fcos.py Co-authored-by:
Zhiqiang Wang <zhiqwang@foxmail.com> * Update torchvision/prototype/models/detection/fcos.py Co-authored-by:
Zhiqiang Wang <zhiqwang@foxmail.com> Co-authored-by:
zhiqiang <zhiqwang@foxmail.com> Co-authored-by:
Joao Gomes <jdsgomes@fb.com> Co-authored-by:
Vasilis Vryniotis <datumbox@users.noreply.github.com> Co-authored-by:
Joao Gomes <joaopsgomes@gmail.com>
-
- 13 Jan, 2022 1 commit
-
-
Kai Zhang authored
* add regnet_y_128gf * fix test * add expected test file * update regnet factory function, add to prototype as well * write torchscript to temp file instead bytesio in model test * docs * clear GPU memory * no_grad * nit Co-authored-by:Vasilis Vryniotis <datumbox@users.noreply.github.com>
-
- 06 Dec, 2021 1 commit
-
-
Nicolas Hug authored
-
- 30 Nov, 2021 1 commit
-
-
Vasilis Vryniotis authored
* Change the `default` weights mechanism to sue Enum aliases. * Change `get_weights` to work with full Enum names and make it public. * Applying improvements from code review.
-
- 29 Nov, 2021 1 commit
-
-
Nicolas Hug authored
Co-authored-by:Vasilis Vryniotis <datumbox@users.noreply.github.com>
-
- 27 Nov, 2021 1 commit
-
-
Yiwen Song authored
* [vit] Adding ViT to torchvision/models * adding pre-logits layer + resolving comments * Fix the model attribute bug * Change version to arch * fix failing unittests * remove useless prints * reduce input size to fix unittests * Increase windows-cpu executor to 2xlarge * Use `batch_first=True` and remove classifier * Change resource_class back to xlarge * Remove vit_h_14 * Remove vit_h_14 from __all__ * Move vision_transformer.py into prototype * Fix formatting issue * remove arch in builder * Fix type err in model builder * address comments and trigger unittests * remove the prototype import in torchvision.models * Adding vit back to models to trigger CircleCI test * fix test_jit_forward_backward * Move all to prototype. * Adopt new helper methods and fix prototype tests. * Remove unused import. Co-authored-by:
Vasilis Vryniotis <datumbox@users.noreply.github.com> Co-authored-by:
Vasilis Vryniotis <vvryniotis@fb.com>
-
- 22 Nov, 2021 1 commit
-
-
Philip Meier authored
-
- 06 Nov, 2021 1 commit
-
-
Philip Meier authored
* disable weight download and state dict loading for model tests * fix indent * debug * nuclear option * revert unrelated change * cleanup * add explanation * typo
-
- 28 Oct, 2021 1 commit
-
-
Jirka Borovec authored
Co-authored-by:Nicolas Hug <nicolashug@fb.com>
-
- 26 Oct, 2021 1 commit
-
-
Vasilis Vryniotis authored
* Refactoring tests. * Fixing lint. * Skip tests for models that don't have weights.
-
- 21 Oct, 2021 1 commit
-
-
Vasilis Vryniotis authored
-
- 18 Oct, 2021 1 commit
-
-
Joao Gomes authored
* adding test for trainable paramters in detection models * modifying range of trainable layers Co-authored-by:Vasilis Vryniotis <datumbox@users.noreply.github.com>
-
- 13 Oct, 2021 1 commit
-
-
Joao Gomes authored
* adding tests to check output of quantized models * adding test quantized model weights * merge test_new_quantized_classification_model with test_quantized_classification_model * adding skipif removed by mistake * addressing comments from PR * removing unused argument * fixing lint errors * changing model to eval model and updating weights * Update test/test_models.py Co-authored-by:
Vasilis Vryniotis <datumbox@users.noreply.github.com> * enforce single test in circleci * changing random seed * updating weights for new seed * adding missing empty line * try 128 random seed * try 256 random seed * try 16 random seed * disable inception_v3 input/output quantization tests * removing ModelTester.test_inception_v3_quantized_expect.pkl * reverting temporary ci run_test.sh changes Co-authored-by:
Vasilis Vryniotis <datumbox@users.noreply.github.com>
-
- 04 Oct, 2021 2 commits
-
-
Nicolas Hug authored
-
Philip Meier authored
* add ufmt as code formatter * cleanup * quote ufmt requirement * split imports into more groups * regenerate circleci config * fix CI * clarify local testing utils section * use ufmt pre-commit hook * split relative imports into local category * Revert "split relative imports into local category" This reverts commit f2e224cde2008c56c9347c1f69746d39065cdd51. * pin black and usort dependencies * fix local test utils detection * fix ufmt rev * add reference utils to local category * fix usort config * remove custom categories sorting * Run pre-commit without fixing flake8 * got a double import in merge Co-authored-by:Nicolas Hug <nicolashug@fb.com>
-
- 21 Sep, 2021 1 commit
-
-
Beat Buesser authored
* Allow gradient backpropagation through GeneralizedRCNNTransform to inputs Signed-off-by:
Beat Buesser <beat.buesser@ie.ibm.com> * Add unit tests for gradient backpropagation to inputs Signed-off-by:
Beat Buesser <beat.buesser@ie.ibm.com> * Update torchvision/models/detection/transform.py Co-authored-by:
Francisco Massa <fvsmassa@gmail.com> * Update _check_input_backprop Signed-off-by:
Beat Buesser <beat.buesser@ie.ibm.com> * Account for tests requiring cuda Signed-off-by:
Beat Buesser <beat.buesser@ie.ibm.com> Co-authored-by:
Francisco Massa <fvsmassa@gmail.com> Co-authored-by:
Vasilis Vryniotis <datumbox@users.noreply.github.com>
-
- 12 Jul, 2021 1 commit
-
-
Nicolas Hug authored
-
- 28 Jun, 2021 1 commit
-
-
Vasilis Vryniotis authored
* Add check for fx compatibility on segmentation models. * Add fx check on video models.
-
- 25 Jun, 2021 1 commit
-
-
Nicolas Hug authored
-
- 21 Jun, 2021 1 commit
-
-
Francisco Massa authored
* Add test to check that classification models are FX-compatible * Replace torch.equal with torch.allclose * remove skipling Co-authored-by:Nicolas Hug <nicolashug@fb.com>
-
- 14 Jun, 2021 1 commit
-
-
Nicolas Hug authored
-
- 10 Jun, 2021 1 commit
-
-
Nicolas Hug authored
-
- 07 Jun, 2021 1 commit
-
-
Anirudh authored
-
- 03 Jun, 2021 1 commit
-
-
Nicolas Hug authored
-
- 27 May, 2021 1 commit
-
-
Vasilis Vryniotis authored
* Speed up keypoint and retina. * Update keypoint expected file * Speed up fasterrcnn_resnet50_fpn. * Speed up maskrcnn_resnet50_fpn. * Updating params to resolve flakiness. * limit runs to those 4 tests * Relaxing precision to resolve flakiness * Undo test filtering
-
- 26 May, 2021 2 commits
-
-
Vasilis Vryniotis authored
* Improve model parameterization on tests. * Code review changes.
-
Vasilis Vryniotis authored
Co-authored-by:Nicolas Hug <nicolashug@fb.com>
-
- 24 May, 2021 1 commit
-
-
Nicolas Hug authored
Co-authored-by:Philip Meier <github.pmeier@posteo.de>
-
- 11 May, 2021 1 commit
-
-
Vasilis Vryniotis authored
* Partial implementation of SSDlite. * Add normal init and BN hyperparams. * Refactor to keep JIT happy * Completed SSDlite. * Fix lint * Update todos * Add expected file in repo. * Use C4 expansion instead of C4 output. * Change scales formula for Default Boxes. * Add cosine annealing on trainer. * Make T_max count epochs. * Fix test and handle corner-case. * Add support of support width_mult * Add ssdlite presets. * Change ReLU6, [-1,1] rescaling, backbone init & no pretraining. * Use _reduced_tail=True. * Add sync BN support. * Adding the best config along with its weights and documentation. * Make mean/std configurable. * Fix not implemented for half exception
-
- 04 May, 2021 1 commit
-
-
Nicolas Hug authored
-
- 30 Apr, 2021 1 commit
-
-
Vasilis Vryniotis authored
* Early skeleton of API. * Adding MultiFeatureMap and vgg16 backbone. * Making vgg16 backbone same as paper. * Making code generic to support all vggs. * Moving vgg's extra layers a separate class + L2 scaling. * Adding header vgg layers. * Fix maxpool patching. * Refactoring code to allow for support of different backbones & sizes: - Skeleton for Default Boxes generator class - Dynamic estimation of configuration when possible - Addition of types * Complete the implementation of DefaultBox generator. * Replace randn with empty. * Minor refactoring * Making clamping between 0 and 1 optional. * Change xywh to xyxy encoding. * Adding parameters and reusing objects in constructor. * Temporarily inherit from Retina to avoid dup code. * Implement forward methods + temp workarounds to inherit from retina. * Inherit more methods from retinanet. * Fix type error. * Add Regression loss. * Fixing JIT issues. * Change JIT workaround to minimize new code. * Fixing initialization bug. * Add classification loss. * Update todos. * Add weight loading support. * Support SSD512. * Change kernel_size to get output size 1x1 * Add xavier init and refactoring. * Adding unit-tests and fixing JIT issues. * Add a test for dbox generator. * Remove unnecessary import. * Workaround on GeneralizedRCNNTransform to support fixed size input. * Remove unnecessary random calls from the test. * Remove more rand calls from the test. * change mapping and handling of empty labels * Fix JIT warnings. * Speed up loss. * Convert 0-1 dboxes to original size. * Fix warning. * Fix tests. * Update comments. * Fixing minor bugs. * Introduce a custom DBoxMatcher. * Minor refactoring * Move extra layer definition inside feature extractor. * handle no bias on init. * Remove fixed image size limitation * Change initialization values for bias of classification head. * Refactoring and update test file. * Adding ResNet backbone. * Minor refactoring. * Remove inheritance of retina and general refactoring. * SSD should fix the input size. * Fixing messages and comments. * Silently ignoring exception if test-only. * Update comments. * Update regression loss. * Restore Xavier init everywhere, update the negative sampling method, change the clipping approach. * Fixing tests. * Refactor to move the losses from the Head to the SSD. * Removing resnet50 ssd version. * Adding support for best performing backbone and its config. * Refactor and clean up the API. * Fix lint * Update todos and comments. * Adding RandomHorizontalFlip and RandomIoUCrop transforms. * Adding necessary checks to our tranforms. * Adding RandomZoomOut. * Adding RandomPhotometricDistort. * Moving Detection transforms to references. * Update presets * fix lint * leave compose and object * Adding scaling for completeness. * Adding params in the repr * Remove unnecessary import. * minor refactoring * Remove unnecessary call. * Give better names to DBox* classes * Port num_anchors estimation in generator * Remove rescaling and fix presets * Add the ability to pass a custom head and refactoring. * fix lint * Fix unit-test * Update todos. * Change mean values. * Change the default parameter of SSD to train the full VGG16 and remove the catch of exception for eval only. * Adding documentation * Adding weights and updating readmes. * Update the model weights with a more performing model. * Adding doc for head. * Restore import.
-
- 23 Apr, 2021 1 commit
-
-
Vasilis Vryniotis authored
-
- 21 Apr, 2021 1 commit
-
-
Nicolas Hug authored
* refactor test_models to use pytest * Also xfail the detection models * Remove xfail and just comment out expected failing parts * Comment out some more * put back commented checks * cleaning + comment * docs * void unnecessary changes * r2plus1d_18 seems to segfault on linux gpu?? * put back test, failure is unrelated Co-authored-by:Francisco Massa <fvsmassa@gmail.com>
-
- 19 Apr, 2021 1 commit
-
-
Nicolas Hug authored
-
- 27 Jan, 2021 1 commit
-
-
Vasilis Vryniotis authored
* Making _segm_resnet() generic and reusable. * Adding fcn and deeplabv3 directly on mobilenetv3 backbone. * Adding tests for segmentation models. * Rename is_strided with _is_cn. * Add dilation support on MobileNetV3 for Segmentation. * Add Lite R-ASPP with MobileNetV3 backbone. * Add pretrained model weights. * Removing model fcn_mobilenet_v3_large. * Adding docs and imports. * Fixing typo and readme.
-
- 25 Jan, 2021 1 commit
-
-
Vasilis Vryniotis authored
* Modify segmentation tests compare against expected values. * Exclude flaky autocast tests. Co-authored-by:Francisco Massa <fvsmassa@gmail.com>
-
- 19 Jan, 2021 1 commit
-
-
Vasilis Vryniotis authored
* Tag fasterrcnn mobilenetv3 model with 320, add new inference config that makes it 2x faster sacrificing a bit of mAP. * Add a high resolution fasterrcnn mobilenetv3 model. * Update tests and expected values.
-
- 18 Jan, 2021 1 commit
-
-
Vasilis Vryniotis authored
* Minor refactoring of a private method to make it reusuable. * Adding a FasterRCNN + MobileNetV3 with & w/o FPN models. * Reducing Resolution to 320-640 and anchor sizes to 16-256. * Increase anchor sizes. * Adding rpn score threshold param on the train script. * Adding trainable_backbone_layers param on the train script. * Adding rpn_score_thresh param directly in fasterrcnn_mobilenet_v3_large_fpn. * Remove fasterrcnn_mobilenet_v3_large prototype and update expected file. * Update documentation and adding weights. * Use buildin Identity. * Fix spelling.
-