1. 15 Mar, 2022 1 commit
  2. 09 Mar, 2022 2 commits
  3. 02 Feb, 2022 1 commit
    • Vasilis Vryniotis's avatar
      Implement is_qat in TorchVision (#5299) · 8a16e12f
      Vasilis Vryniotis authored
      * Add is_qat support using a method getter
      
      * Switch to an internal _fuse_modules
      
      * Fix linter.
      
      * Pass is_qat=False on PTQ
      
      * Fix bug on ra_sampler flag.
      
      * Set is_qat=True for QAT
      8a16e12f
  4. 29 Jan, 2022 1 commit
    • Yiwen Song's avatar
      [ViT] Adding conv_stem support (#5226) · 7d868aa6
      Yiwen Song authored
      * Adding conv_stem support
      
      * fix lint
      
      * bug fix
      
      * address comments
      
      * fix after merge
      
      * adding back checking lines
      
      * fix failing tests
      
      * fix iignore
      
      * add unittest & address comments
      
      * fix memory issue
      
      * address comments
      7d868aa6
  5. 21 Jan, 2022 1 commit
    • Hu Ye's avatar
      add FCOS (#4961) · 7d4bdd43
      Hu Ye authored
      
      
      * add fcos
      
      * update fcos
      
      * add giou_loss
      
      * add BoxLinearCoder for FCOS
      
      * add full code for FCOS
      
      * add giou loss
      
      * add fcos
      
      * add __all__
      
      * Fixing lint
      
      * Fixing lint in giou_loss.py
      
      * Add typing annotation to fcos
      
      * Add trained checkpoints
      
      * Use partial to replace lambda
      
      * Minor fixes to docstrings
      
      * Apply ufmt format
      
      * Fixing docstrings
      
      * Fixing jit scripting
      
      * Minor fixes to docstrings
      
      * Fixing jit scripting
      
      * Ignore mypy in fcos
      
      * Fixing trained checkpoints
      
      * Fixing unit-test of jit script
      
      * Fixing docstrings
      
      * Add test/expect/ModelTester.test_fcos_resnet50_fpn_expect.pkl
      
      * Fixing test_detection_model_trainable_backbone_layers
      
      * Update test_fcos_resnet50_fpn_expect.pkl
      
      * rename stride to box size
      
      * remove TODO and fix some typo
      
      * merge some code for better
      
      * impove the comments
      
      * remove decode and encode of BoxLinearCoder
      
      * remove some unnecessary hints
      
      * use the default value in detectron2.
      
      * update doc
      
      * Add unittest for BoxLinearCoder
      
      * Add types in FCOS
      
      * Add docstring for BoxLinearCoder
      
      * Minor fix for the docstring
      
      * update doc
      
      * Update fcos_resnet50_fpn_coco pretained weights url
      
      * Update torchvision/models/detection/fcos.py
      Co-authored-by: default avatarVasilis Vryniotis <datumbox@users.noreply.github.com>
      
      * Update torchvision/models/detection/fcos.py
      Co-authored-by: default avatarVasilis Vryniotis <datumbox@users.noreply.github.com>
      
      * Update torchvision/models/detection/fcos.py
      Co-authored-by: default avatarVasilis Vryniotis <datumbox@users.noreply.github.com>
      
      * Update torchvision/models/detection/fcos.py
      Co-authored-by: default avatarVasilis Vryniotis <datumbox@users.noreply.github.com>
      
      * Add FCOS model documentation
      
      * Fix typo in FCOS documentation
      
      * Add fcos to the prototype builder
      
      * Capitalize COCO_V1
      
      * Fix params of fcos
      
      * fix bug for partial
      
      * Fixing docs indentation
      
      * Fixing docs format in giou_loss
      
      * Adopt Reference for GIoU Loss
      
      * Rename giou_loss to generalized_box_iou_loss
      
      * remove overwrite_eps
      
      * Update AP test values
      
      * Minor fixes for the docs
      
      * Minor fixes for the docs
      
      * Update torchvision/models/detection/fcos.py
      Co-authored-by: default avatarZhiqiang Wang <zhiqwang@foxmail.com>
      
      * Update torchvision/prototype/models/detection/fcos.py
      Co-authored-by: default avatarZhiqiang Wang <zhiqwang@foxmail.com>
      Co-authored-by: default avatarzhiqiang <zhiqwang@foxmail.com>
      Co-authored-by: default avatarJoao Gomes <jdsgomes@fb.com>
      Co-authored-by: default avatarVasilis Vryniotis <datumbox@users.noreply.github.com>
      Co-authored-by: default avatarJoao Gomes <joaopsgomes@gmail.com>
      7d4bdd43
  6. 13 Jan, 2022 1 commit
  7. 06 Dec, 2021 1 commit
  8. 30 Nov, 2021 1 commit
    • Vasilis Vryniotis's avatar
      Refactor the `get_weights` API (#5006) · 3d8723d5
      Vasilis Vryniotis authored
      * Change the `default` weights mechanism to sue Enum aliases.
      
      * Change `get_weights` to work with full Enum names and make it public.
      
      * Applying improvements from code review.
      3d8723d5
  9. 29 Nov, 2021 1 commit
  10. 27 Nov, 2021 1 commit
    • Yiwen Song's avatar
      Adding ViT to torchvision/models (#4594) · 47281bbf
      Yiwen Song authored
      
      
      * [vit] Adding ViT to torchvision/models
      
      * adding pre-logits layer + resolving comments
      
      * Fix the model attribute bug
      
      * Change version to arch
      
      * fix failing unittests
      
      * remove useless prints
      
      * reduce input size to fix unittests
      
      * Increase windows-cpu executor to 2xlarge
      
      * Use `batch_first=True` and remove classifier
      
      * Change resource_class back to xlarge
      
      * Remove vit_h_14
      
      * Remove vit_h_14 from __all__
      
      * Move vision_transformer.py into prototype
      
      * Fix formatting issue
      
      * remove arch in builder
      
      * Fix type err in model builder
      
      * address comments and trigger unittests
      
      * remove the prototype import in torchvision.models
      
      * Adding vit back to models to trigger CircleCI test
      
      * fix test_jit_forward_backward
      
      * Move all to prototype.
      
      * Adopt new helper methods and fix prototype tests.
      
      * Remove unused import.
      Co-authored-by: default avatarVasilis Vryniotis <datumbox@users.noreply.github.com>
      Co-authored-by: default avatarVasilis Vryniotis <vvryniotis@fb.com>
      47281bbf
  11. 22 Nov, 2021 1 commit
  12. 06 Nov, 2021 1 commit
  13. 28 Oct, 2021 1 commit
  14. 26 Oct, 2021 1 commit
  15. 21 Oct, 2021 1 commit
  16. 18 Oct, 2021 1 commit
  17. 13 Oct, 2021 1 commit
  18. 04 Oct, 2021 2 commits
    • Nicolas Hug's avatar
      Fix all outstanding flake8 issues (#4535) · b81d189d
      Nicolas Hug authored
      b81d189d
    • Philip Meier's avatar
      Add ufmt (usort + black) as code formatter (#4384) · 5f0edb97
      Philip Meier authored
      
      
      * add ufmt as code formatter
      
      * cleanup
      
      * quote ufmt requirement
      
      * split imports into more groups
      
      * regenerate circleci config
      
      * fix CI
      
      * clarify local testing utils section
      
      * use ufmt pre-commit hook
      
      * split relative imports into local category
      
      * Revert "split relative imports into local category"
      
      This reverts commit f2e224cde2008c56c9347c1f69746d39065cdd51.
      
      * pin black and usort dependencies
      
      * fix local test utils detection
      
      * fix ufmt rev
      
      * add reference utils to local category
      
      * fix usort config
      
      * remove custom categories sorting
      
      * Run pre-commit without fixing flake8
      
      * got a double import in merge
      Co-authored-by: default avatarNicolas Hug <nicolashug@fb.com>
      5f0edb97
  19. 21 Sep, 2021 1 commit
  20. 12 Jul, 2021 1 commit
  21. 28 Jun, 2021 1 commit
  22. 25 Jun, 2021 1 commit
  23. 21 Jun, 2021 1 commit
  24. 14 Jun, 2021 1 commit
  25. 10 Jun, 2021 1 commit
  26. 07 Jun, 2021 1 commit
  27. 03 Jun, 2021 1 commit
  28. 27 May, 2021 1 commit
    • Vasilis Vryniotis's avatar
      Speedup the slow tests of detection models (#3929) · 4c563846
      Vasilis Vryniotis authored
      * Speed up keypoint and retina.
      
      * Update keypoint expected file
      
      * Speed up fasterrcnn_resnet50_fpn.
      
      * Speed up maskrcnn_resnet50_fpn.
      
      * Updating params to resolve flakiness.
      
      * limit runs to those 4 tests
      
      * Relaxing precision to resolve flakiness
      
      * Undo test filtering
      4c563846
  29. 26 May, 2021 2 commits
  30. 24 May, 2021 1 commit
  31. 11 May, 2021 1 commit
    • Vasilis Vryniotis's avatar
      Add SSDlite architecture with MobileNetV3 backbones (#3757) · 43d77206
      Vasilis Vryniotis authored
      * Partial implementation of SSDlite.
      
      * Add normal init and BN hyperparams.
      
      * Refactor to keep JIT happy
      
      * Completed SSDlite.
      
      * Fix lint
      
      * Update todos
      
      * Add expected file in repo.
      
      * Use C4 expansion instead of C4 output.
      
      * Change scales formula for Default Boxes.
      
      * Add cosine annealing on trainer.
      
      * Make T_max count epochs.
      
      * Fix test and handle corner-case.
      
      * Add support of support width_mult
      
      * Add ssdlite presets.
      
      * Change ReLU6, [-1,1] rescaling, backbone init & no pretraining.
      
      * Use _reduced_tail=True.
      
      * Add sync BN support.
      
      * Adding the best config along with its weights and documentation.
      
      * Make mean/std configurable.
      
      * Fix not implemented for half exception
      43d77206
  32. 04 May, 2021 1 commit
  33. 30 Apr, 2021 1 commit
    • Vasilis Vryniotis's avatar
      Add SSD architecture with VGG16 backbone (#3403) · 730c5e1e
      Vasilis Vryniotis authored
      * Early skeleton of API.
      
      * Adding MultiFeatureMap and vgg16 backbone.
      
      * Making vgg16 backbone same as paper.
      
      * Making code generic to support all vggs.
      
      * Moving vgg's extra layers a separate class + L2 scaling.
      
      * Adding header vgg layers.
      
      * Fix maxpool patching.
      
      * Refactoring code to allow for support of different backbones & sizes:
      - Skeleton for Default Boxes generator class
      - Dynamic estimation of configuration when possible
      - Addition of types
      
      * Complete the implementation of DefaultBox generator.
      
      * Replace randn with empty.
      
      * Minor refactoring
      
      * Making clamping between 0 and 1 optional.
      
      * Change xywh to xyxy encoding.
      
      * Adding parameters and reusing objects in constructor.
      
      * Temporarily inherit from Retina to avoid dup code.
      
      * Implement forward methods + temp workarounds to inherit from retina.
      
      * Inherit more methods from retinanet.
      
      * Fix type error.
      
      * Add Regression loss.
      
      * Fixing JIT issues.
      
      * Change JIT workaround to minimize new code.
      
      * Fixing initialization bug.
      
      * Add classification loss.
      
      * Update todos.
      
      * Add weight loading support.
      
      * Support SSD512.
      
      * Change kernel_size to get output size 1x1
      
      * Add xavier init and refactoring.
      
      * Adding unit-tests and fixing JIT issues.
      
      * Add a test for dbox generator.
      
      * Remove unnecessary import.
      
      * Workaround on GeneralizedRCNNTransform to support fixed size input.
      
      * Remove unnecessary random calls from the test.
      
      * Remove more rand calls from the test.
      
      * change mapping and handling of empty labels
      
      * Fix JIT warnings.
      
      * Speed up loss.
      
      * Convert 0-1 dboxes to original size.
      
      * Fix warning.
      
      * Fix tests.
      
      * Update comments.
      
      * Fixing minor bugs.
      
      * Introduce a custom DBoxMatcher.
      
      * Minor refactoring
      
      * Move extra layer definition inside feature extractor.
      
      * handle no bias on init.
      
      * Remove fixed image size limitation
      
      * Change initialization values for bias of classification head.
      
      * Refactoring and update test file.
      
      * Adding ResNet backbone.
      
      * Minor refactoring.
      
      * Remove inheritance of retina and general refactoring.
      
      * SSD should fix the input size.
      
      * Fixing messages and comments.
      
      * Silently ignoring exception if test-only.
      
      * Update comments.
      
      * Update regression loss.
      
      * Restore Xavier init everywhere, update the negative sampling method, change the clipping approach.
      
      * Fixing tests.
      
      * Refactor to move the losses from the Head to the SSD.
      
      * Removing resnet50 ssd version.
      
      * Adding support for best performing backbone and its config.
      
      * Refactor and clean up the API.
      
      * Fix lint
      
      * Update todos and comments.
      
      * Adding RandomHorizontalFlip and RandomIoUCrop transforms.
      
      * Adding necessary checks to our tranforms.
      
      * Adding RandomZoomOut.
      
      * Adding RandomPhotometricDistort.
      
      * Moving Detection transforms to references.
      
      * Update presets
      
      * fix lint
      
      * leave compose and object
      
      * Adding scaling for completeness.
      
      * Adding params in the repr
      
      * Remove unnecessary import.
      
      * minor refactoring
      
      * Remove unnecessary call.
      
      * Give better names to DBox* classes
      
      * Port num_anchors estimation in generator
      
      * Remove rescaling and fix presets
      
      * Add the ability to pass a custom head and refactoring.
      
      * fix lint
      
      * Fix unit-test
      
      * Update todos.
      
      * Change mean values.
      
      * Change the default parameter of SSD to train the full VGG16 and remove the catch of exception for eval only.
      
      * Adding documentation
      
      * Adding weights and updating readmes.
      
      * Update the model weights with a more performing model.
      
      * Adding doc for head.
      
      * Restore import.
      730c5e1e
  34. 23 Apr, 2021 1 commit
  35. 21 Apr, 2021 1 commit
    • Nicolas Hug's avatar
      Refactor test_models to use pytest (#3697) · a64b54ac
      Nicolas Hug authored
      
      
      * refactor test_models to use pytest
      
      * Also xfail the detection models
      
      * Remove xfail and just comment out expected failing parts
      
      * Comment out some more
      
      * put back commented checks
      
      * cleaning + comment
      
      * docs
      
      * void unnecessary changes
      
      * r2plus1d_18 seems  to segfault on linux gpu??
      
      * put back test, failure is unrelated
      Co-authored-by: default avatarFrancisco Massa <fvsmassa@gmail.com>
      a64b54ac
  36. 19 Apr, 2021 1 commit
  37. 27 Jan, 2021 1 commit
    • Vasilis Vryniotis's avatar
      Add MobileNetV3 architecture for Segmentation (#3276) · e2db2edd
      Vasilis Vryniotis authored
      * Making _segm_resnet() generic and reusable.
      
      * Adding fcn and deeplabv3 directly on mobilenetv3 backbone.
      
      * Adding tests for segmentation models.
      
      * Rename is_strided with _is_cn.
      
      * Add dilation support on MobileNetV3 for Segmentation.
      
      * Add Lite R-ASPP with MobileNetV3 backbone.
      
      * Add pretrained model weights.
      
      * Removing model fcn_mobilenet_v3_large.
      
      * Adding docs and imports.
      
      * Fixing typo and readme.
      e2db2edd