1. 28 Apr, 2022 1 commit
    • YosuaMichael's avatar
      Add shufflenetv2 1.5 and 2.0 weights (#5906) · 5fc36b4f
      YosuaMichael authored
      * Add shufflenetv2 1.5 and 2.0 weights
      
      * Update recipe
      
      * Add to docs
      
      * Use resize_size=232 for eval and update the result
      
      * Add quantized shufflenetv2 large
      
      * Update docs and readme
      
      * Format with ufmt
      
      * Add to hubconf.py
      
      * Update readme for classification reference
      
      * Fix reference classification readme
      
      * Fix typo on readme
      
      * Update reference/classification/readme
      5fc36b4f
  2. 27 Apr, 2022 1 commit
    • Hu Ye's avatar
      Adding Swin Transformer architecture (#5491) · e288f6ca
      Hu Ye authored
      
      
      * add swin transformer
      
      * Update swin_transformer.py
      
      * Update swin_transformer.py
      
      * fix lint
      
      * fix lint
      
      * refactor code
      
      * add swin_transformer
      
      * Update swin_transformer.py
      
      * fix bug
      
      * refactor code
      
      * fix lint
      
      * update init_weights
      
      * move shift_window into attention
      
      * refactor code
      
      * fix bug
      
      * Update swin_transformer.py
      
      * Update swin_transformer.py
      
      * fix lint
      
      * add patch_merge
      
      * fix bug
      
      * Update swin_transformer.py
      
      * Update swin_transformer.py
      
      * Update swin_transformer.py
      
      * refactor code
      
      * Update swin_transformer.py
      
      * refactor code
      
      * fix lint
      
      * refactor code
      
      * add swin_tiny
      
      * add swin_tiny.pkl
      
      * fix lint
      
      * Delete ModelTester.test_swin_tiny_expect.pkl
      
      * add swin_tiny
      
      * add
      
      * add Optional to bias
      
      * update init weights
      
      * update init_weights and add no weight decay
      
      * add no weight decay
      
      * add set_weight_decay
      
      * add set_weight_decay
      
      * fix lint
      
      * fix lint
      
      * add lr_cos_min
      
      * add other swin models
      
      * Update torchvision/models/swin_transformer.py
      Co-authored-by: default avatarVasilis Vryniotis <datumbox@users.noreply.github.com>
      
      * refactor doc
      
      * Update utils.py
      
      * Update train.py
      
      * Update train.py
      
      * Update swin_transformer.py
      
      * update model builder
      
      * fix lint
      
      * add
      
      * Update torchvision/models/swin_transformer.py
      Co-authored-by: default avatarVasilis Vryniotis <datumbox@users.noreply.github.com>
      
      * Update torchvision/models/swin_transformer.py
      Co-authored-by: default avatarVasilis Vryniotis <datumbox@users.noreply.github.com>
      
      * update other model
      
      * simplify the model name just like ViT
      
      * add lr_cos_min
      
      * fix lint
      
      * fix lint
      
      * Update swin_transformer.py
      
      * Update swin_transformer.py
      
      * Update swin_transformer.py
      
      * Delete ModelTester.test_swin_tiny_expect.pkl
      
      * add swin_t
      
      * refactor code
      
      * Update train.py
      
      * add swin_s
      
      * ignore a error of mypy
      
      * Update swin_transformer.py
      
      * fix lint
      
      * add swin_b
      
      * add swin_l
      
      * refactor code
      
      * Update train.py
      
      * move relative_position_bias to __init__
      
      * fix formatting
      
      * Revert "fix formatting"
      
      This reverts commit 41faba232668f7ac4273a0cf632c0d0130c7ce9c.
      
      * Revert "move relative_position_bias to __init__"
      
      This reverts commit f0615440bf18617dc0e5dc4839bd5ed27e5ed010.
      
      * refactor code
      
      * Remove deprecated meta-data from `_COMMON_META`
      
      * fix linter
      
      * add pretrained weights for swin_t
      
      * fix format
      
      * apply ufmt
      
      * add documentation
      
      * update references README
      
      * adding new style docs
      
      * update pre-trained weights values
      
      * remove other variants
      
      * fix typo
      
      * Remove expect for the variants not yet supported
      Co-authored-by: default avatarVasilis Vryniotis <datumbox@users.noreply.github.com>
      Co-authored-by: default avatarJoao Gomes <jdsgomes@fb.com>
      e288f6ca
  3. 05 Apr, 2022 1 commit
    • YosuaMichael's avatar
      Adding the huge vision transformer from SWAG (#5721) · 63576c9f
      YosuaMichael authored
      
      
      * Add vit_b_16_swag
      
      * Better handling idiom for image_size, edit test_extended_model to handle case where number of param differ from default due to different image size input
      
      * Update the accuracy to the experiment result on torchvision model
      
      * Fix typo missing underscore
      
      * raise exception instead of torch._assert, add back publication year (accidentally deleted)
      
      * Add license information on meta and readme
      
      * Improve wording and fix typo for pretrained model license in readme
      
      * Add vit_l_16 weight
      
      * Update README.rst
      Co-authored-by: default avatarVasilis Vryniotis <datumbox@users.noreply.github.com>
      
      * Update the accuracy meta on vit_l_16_swag model to result from our experiment
      
      * Add vit_h_14_swag model
      
      * Add accuracy from experiments
      
      * Add to vit_h_16 model to hubconf.py
      
      * Add docs and expected pkl file for test
      
      * Remove legacy compatibility for ViT_H_14 model
      Co-authored-by: default avatarVasilis Vryniotis <datumbox@users.noreply.github.com>
      
      * Test vit_h_14 with smaller image_size to speedup the test
      Co-authored-by: default avatarVasilis Vryniotis <datumbox@users.noreply.github.com>
      63576c9f
  4. 23 Mar, 2022 1 commit
  5. 22 Mar, 2022 1 commit
    • Vasilis Vryniotis's avatar
      Port Multi-weight support from prototype to main (#5618) · 11bd2eaa
      Vasilis Vryniotis authored
      
      
      * Moving basefiles outside of prototype and porting Alexnet, ConvNext, Densenet and EfficientNet.
      
      * Porting googlenet
      
      * Porting inception
      
      * Porting mnasnet
      
      * Porting mobilenetv2
      
      * Porting mobilenetv3
      
      * Porting regnet
      
      * Porting resnet
      
      * Porting shufflenetv2
      
      * Porting squeezenet
      
      * Porting vgg
      
      * Porting vit
      
      * Fix docstrings
      
      * Fixing imports
      
      * Adding missing import
      
      * Fix mobilenet imports
      
      * Fix tests
      
      * Fix prototype tests
      
      * Exclude get_weight from models on test
      
      * Fix init files
      
      * Porting googlenet
      
      * Porting inception
      
      * porting mobilenetv2
      
      * porting mobilenetv3
      
      * porting resnet
      
      * porting shufflenetv2
      
      * Fix test and linter
      
      * Fixing docs.
      
      * Porting Detection models (#5617)
      
      * fix inits
      
      * fix docs
      
      * Port faster_rcnn
      
      * Port fcos
      
      * Port keypoint_rcnn
      
      * Port mask_rcnn
      
      * Port retinanet
      
      * Port ssd
      
      * Port ssdlite
      
      * Fix linter
      
      * Fixing tests
      
      * Fixing tests
      
      * Fixing vgg test
      
      * Porting Optical Flow, Segmentation, Video models (#5619)
      
      * Porting raft
      
      * Porting video resnet
      
      * Porting deeplabv3
      
      * Porting fcn and lraspp
      
      * Fixing the tests and linter
      
      * Porting docs, examples, tutorials and galleries (#5620)
      
      * Fix examples, tutorials and gallery
      
      * Update gallery/plot_optical_flow.py
      Co-authored-by: default avatarNicolas Hug <contact@nicolas-hug.com>
      
      * Fix import
      
      * Revert hardcoded normalization
      
      * fix uncommitted changes
      
      * Fix bug
      
      * Fix more bugs
      
      * Making resize optional for segmentation
      
      * Fixing preset
      
      * Fix mypy
      
      * Fixing documentation strings
      
      * Fix flake8
      
      * minor refactoring
      Co-authored-by: default avatarNicolas Hug <contact@nicolas-hug.com>
      
      * Resolve conflict
      
      * Porting model tests (#5622)
      
      * Porting tests
      
      * Remove unnecessary variable
      
      * Fix linter
      
      * Move prototype to extended tests
      
      * Fix download models job
      
      * Update CI on Multiweight branch to use the new weight download approach (#5628)
      
      * port Pad to prototype transforms (#5621)
      
      * port Pad to prototype transforms
      
      * use literal
      
      * Bump up LibTorchvision version number for Podspec to release Cocoapods (#5624)
      Co-authored-by: default avatarAnton Thomma <anton@pri.co.nz>
      Co-authored-by: default avatarVasilis Vryniotis <datumbox@users.noreply.github.com>
      
      * pre-download model weights in CI docs build (#5625)
      
      * pre-download model weights in CI docs build
      
      * move changes into template
      
      * change docs image
      
      * Regenerated config.yml
      Co-authored-by: default avatarPhilip Meier <github.pmeier@posteo.de>
      Co-authored-by: default avatarAnton Thomma <11010310+thommaa@users.noreply.github.com>
      Co-authored-by: default avatarAnton Thomma <anton@pri.co.nz>
      
      * Porting reference scripts and updating presets (#5629)
      
      * Making _preset.py classes
      
      * Remove support of targets on presets.
      
      * Rewriting the video preset
      
      * Adding tests to check that the bundled transforms are JIT scriptable
      
      * Rename all presets from *Eval to *Inference
      
      * Minor refactoring
      
      * Remove --prototype and --pretrained from reference scripts
      
      * remove  pretained_backbone refs
      
      * Corrections and simplifications
      
      * Fixing bug
      
      * Fixing linter
      
      * Fix flake8
      
      * restore documentation example
      
      * minor fixes
      
      * fix optical flow missing param
      
      * Fixing commands
      
      * Adding weights_backbone support in detection and segmentation
      
      * Updating the commands for InceptionV3
      
      * Setting `weights_backbone` to its fully BC value (#5653)
      
      * Replace default `weights_backbone=None` with its BC values.
      
      * Fixing tests
      
      * Fix linter
      
      * Update docs.
      
      * Update preprocessing on reference scripts.
      
      * Change qat/ptq to their full values.
      
      * Refactoring preprocessing
      
      * Fix video preset
      
      * No initialization on VGG if pretrained
      
      * Fix warning messages for backbone utils.
      
      * Adding star to all preset constructors.
      
      * Fix mypy.
      Co-authored-by: default avatarNicolas Hug <contact@nicolas-hug.com>
      Co-authored-by: default avatarPhilip Meier <github.pmeier@posteo.de>
      Co-authored-by: default avatarAnton Thomma <11010310+thommaa@users.noreply.github.com>
      Co-authored-by: default avatarAnton Thomma <anton@pri.co.nz>
      11bd2eaa
  6. 04 Mar, 2022 1 commit
  7. 02 Mar, 2022 1 commit
    • Vasilis Vryniotis's avatar
      Adding EfficientNetV2 architecture (#5450) · e6d82f7d
      Vasilis Vryniotis authored
      * Extend the EfficientNet class to support v1 and v2.
      
      * Refactor config/builder methods and add prototype builders
      
      * Refactoring weight info.
      
      * Update dropouts based on TF config ref
      
      * Update BN eps on TF base_config
      
      * Use Conv2dNormActivation.
      
      * Adding pre-trained weights for EfficientNetV2-s
      
      * Add Medium and Large weights
      
      * Update stats with single batch run.
      
      * Add accuracies in the docs.
      e6d82f7d
  8. 01 Feb, 2022 2 commits
  9. 23 Jan, 2022 1 commit
  10. 21 Jan, 2022 1 commit
    • Hu Ye's avatar
      add FCOS (#4961) · 7d4bdd43
      Hu Ye authored
      
      
      * add fcos
      
      * update fcos
      
      * add giou_loss
      
      * add BoxLinearCoder for FCOS
      
      * add full code for FCOS
      
      * add giou loss
      
      * add fcos
      
      * add __all__
      
      * Fixing lint
      
      * Fixing lint in giou_loss.py
      
      * Add typing annotation to fcos
      
      * Add trained checkpoints
      
      * Use partial to replace lambda
      
      * Minor fixes to docstrings
      
      * Apply ufmt format
      
      * Fixing docstrings
      
      * Fixing jit scripting
      
      * Minor fixes to docstrings
      
      * Fixing jit scripting
      
      * Ignore mypy in fcos
      
      * Fixing trained checkpoints
      
      * Fixing unit-test of jit script
      
      * Fixing docstrings
      
      * Add test/expect/ModelTester.test_fcos_resnet50_fpn_expect.pkl
      
      * Fixing test_detection_model_trainable_backbone_layers
      
      * Update test_fcos_resnet50_fpn_expect.pkl
      
      * rename stride to box size
      
      * remove TODO and fix some typo
      
      * merge some code for better
      
      * impove the comments
      
      * remove decode and encode of BoxLinearCoder
      
      * remove some unnecessary hints
      
      * use the default value in detectron2.
      
      * update doc
      
      * Add unittest for BoxLinearCoder
      
      * Add types in FCOS
      
      * Add docstring for BoxLinearCoder
      
      * Minor fix for the docstring
      
      * update doc
      
      * Update fcos_resnet50_fpn_coco pretained weights url
      
      * Update torchvision/models/detection/fcos.py
      Co-authored-by: default avatarVasilis Vryniotis <datumbox@users.noreply.github.com>
      
      * Update torchvision/models/detection/fcos.py
      Co-authored-by: default avatarVasilis Vryniotis <datumbox@users.noreply.github.com>
      
      * Update torchvision/models/detection/fcos.py
      Co-authored-by: default avatarVasilis Vryniotis <datumbox@users.noreply.github.com>
      
      * Update torchvision/models/detection/fcos.py
      Co-authored-by: default avatarVasilis Vryniotis <datumbox@users.noreply.github.com>
      
      * Add FCOS model documentation
      
      * Fix typo in FCOS documentation
      
      * Add fcos to the prototype builder
      
      * Capitalize COCO_V1
      
      * Fix params of fcos
      
      * fix bug for partial
      
      * Fixing docs indentation
      
      * Fixing docs format in giou_loss
      
      * Adopt Reference for GIoU Loss
      
      * Rename giou_loss to generalized_box_iou_loss
      
      * remove overwrite_eps
      
      * Update AP test values
      
      * Minor fixes for the docs
      
      * Minor fixes for the docs
      
      * Update torchvision/models/detection/fcos.py
      Co-authored-by: default avatarZhiqiang Wang <zhiqwang@foxmail.com>
      
      * Update torchvision/prototype/models/detection/fcos.py
      Co-authored-by: default avatarZhiqiang Wang <zhiqwang@foxmail.com>
      Co-authored-by: default avatarzhiqiang <zhiqwang@foxmail.com>
      Co-authored-by: default avatarJoao Gomes <jdsgomes@fb.com>
      Co-authored-by: default avatarVasilis Vryniotis <datumbox@users.noreply.github.com>
      Co-authored-by: default avatarJoao Gomes <joaopsgomes@gmail.com>
      7d4bdd43
  11. 20 Jan, 2022 1 commit
    • Vasilis Vryniotis's avatar
      Adding ConvNeXt architecture in prototype (#5197) · afda28ac
      Vasilis Vryniotis authored
      * Adding CNBlock and skeleton architecture
      
      * Completed implementation.
      
      * Adding model in prototypes.
      
      * Add test and minor refactor for JIT.
      
      * Fix mypy.
      
      * Fixing naming conventions.
      
      * Fixing tests.
      
      * Fix stochastic depth percentages.
      
      * Adding stochastic depth to tiny variant.
      
      * Minor refactoring and adding comments.
      
      * Adding weights.
      
      * Update default weights.
      
      * Fix transforms issue
      
      * Move convnext to prototype.
      
      * linter fix
      
      * fix docs
      
      * Addressing code review comments.
      afda28ac
  12. 19 Jan, 2022 1 commit
  13. 13 Jan, 2022 1 commit
  14. 10 Jan, 2022 1 commit
  15. 06 Dec, 2021 1 commit
  16. 12 Nov, 2021 1 commit
  17. 04 Nov, 2021 1 commit
  18. 03 Nov, 2021 1 commit
  19. 01 Nov, 2021 1 commit
  20. 08 Oct, 2021 1 commit
  21. 05 Oct, 2021 1 commit
    • Kai Zhang's avatar
      Update Regnet model weights (#4530) · 0c0a6a44
      Kai Zhang authored
      * add best weights and x_1_6, x_3_2, y_1_6, y_3_2, y_32 weights
      
      * add best weights and x_1_6, x_3_2, y_1_6, y_3_2, y_32 weights
      
      * add weights for x_16gf, x_32gf, y_16gf
      0c0a6a44
  22. 29 Sep, 2021 1 commit
    • Kai Zhang's avatar
      Add RegNet Architecture in TorchVision (#4403) · 194a0846
      Kai Zhang authored
      * initial code
      
      * add SqueezeExcitation
      
      * initial code
      
      * add SqueezeExcitation
      
      * add SqueezeExcitation
      
      * regnet blocks, stems and model definition
      
      * nit
      
      * add fc layer
      
      * use Callable instead of Enum for block, stem and activation
      
      * add regnet_x and regnet_y model build functions, add docs
      
      * remove unused depth
      
      * use BN/activation constructor and ConvBNActivation
      
      * add expected test pkl files
      
      * allow custom activation in SqueezeExcitation
      
      * use ReLU as the default activation
      
      * initial code
      
      * add SqueezeExcitation
      
      * initial code
      
      * add SqueezeExcitation
      
      * add SqueezeExcitation
      
      * regnet blocks, stems and model definition
      
      * nit
      
      * add fc layer
      
      * use Callable instead of Enum for block, stem and activation
      
      * add regnet_x and regnet_y model build functions, add docs
      
      * remove unused depth
      
      * use BN/activation constructor and ConvBNActivation
      
      * reuse SqueezeExcitation from efficientnet
      
      * refactor RegNetParams into BlockParams
      
      * use nn.init, replace np with torch
      
      * update README
      
      * construct model with stem, block, classifier instances
      
      * Revert "construct model with stem, block, classifier instances"
      
      This reverts commit 850f5f3ed01a2a9b36fcbf8405afd6e41d2e58ef.
      
      * remove unused blocks
      
      * support scaled model
      
      * fuse into ConvBNActivation
      
      * make reset_parameters private
      
      * fix type errors
      
      * fix for unit test
      
      * add pretrained weights for 6 variant models, update docs
      194a0846
  23. 04 Sep, 2021 2 commits
  24. 26 Aug, 2021 1 commit
    • Vasilis Vryniotis's avatar
      Add EfficientNet Architecture in TorchVision (#4293) · 37a9ee5b
      Vasilis Vryniotis authored
      * Adding code skeleton
      
      * Adding MBConvConfig.
      
      * Extend SqueezeExcitation to support custom min_value and activation.
      
      * Implement MBConv.
      
      * Replace stochastic_depth with operator.
      
      * Adding the rest of the EfficientNet implementation
      
      * Update torchvision/models/efficientnet.py
      
      * Replacing 1st activation of SE with SiLU.
      
      * Adding efficientnet_b3.
      
      * Replace mobilenetv3 assets with custom.
      
      * Switch to standard sigmoid and reconfiguring BN.
      
      * Reconfiguration of efficientnet.
      
      * Add repr
      
      * Add weights.
      
      * Update weights.
      
      * Adding B5-B7 weights.
      
      * Update docs and hubconf.
      
      * Fix doc link.
      
      * Fix typo on comment.
      37a9ee5b
  25. 22 May, 2021 1 commit
  26. 18 May, 2021 1 commit
  27. 12 May, 2021 1 commit
  28. 11 May, 2021 1 commit
    • Vasilis Vryniotis's avatar
      Add SSDlite architecture with MobileNetV3 backbones (#3757) · 43d77206
      Vasilis Vryniotis authored
      * Partial implementation of SSDlite.
      
      * Add normal init and BN hyperparams.
      
      * Refactor to keep JIT happy
      
      * Completed SSDlite.
      
      * Fix lint
      
      * Update todos
      
      * Add expected file in repo.
      
      * Use C4 expansion instead of C4 output.
      
      * Change scales formula for Default Boxes.
      
      * Add cosine annealing on trainer.
      
      * Make T_max count epochs.
      
      * Fix test and handle corner-case.
      
      * Add support of support width_mult
      
      * Add ssdlite presets.
      
      * Change ReLU6, [-1,1] rescaling, backbone init & no pretraining.
      
      * Use _reduced_tail=True.
      
      * Add sync BN support.
      
      * Adding the best config along with its weights and documentation.
      
      * Make mean/std configurable.
      
      * Fix not implemented for half exception
      43d77206
  29. 30 Apr, 2021 1 commit
    • Vasilis Vryniotis's avatar
      Add SSD architecture with VGG16 backbone (#3403) · 730c5e1e
      Vasilis Vryniotis authored
      * Early skeleton of API.
      
      * Adding MultiFeatureMap and vgg16 backbone.
      
      * Making vgg16 backbone same as paper.
      
      * Making code generic to support all vggs.
      
      * Moving vgg's extra layers a separate class + L2 scaling.
      
      * Adding header vgg layers.
      
      * Fix maxpool patching.
      
      * Refactoring code to allow for support of different backbones & sizes:
      - Skeleton for Default Boxes generator class
      - Dynamic estimation of configuration when possible
      - Addition of types
      
      * Complete the implementation of DefaultBox generator.
      
      * Replace randn with empty.
      
      * Minor refactoring
      
      * Making clamping between 0 and 1 optional.
      
      * Change xywh to xyxy encoding.
      
      * Adding parameters and reusing objects in constructor.
      
      * Temporarily inherit from Retina to avoid dup code.
      
      * Implement forward methods + temp workarounds to inherit from retina.
      
      * Inherit more methods from retinanet.
      
      * Fix type error.
      
      * Add Regression loss.
      
      * Fixing JIT issues.
      
      * Change JIT workaround to minimize new code.
      
      * Fixing initialization bug.
      
      * Add classification loss.
      
      * Update todos.
      
      * Add weight loading support.
      
      * Support SSD512.
      
      * Change kernel_size to get output size 1x1
      
      * Add xavier init and refactoring.
      
      * Adding unit-tests and fixing JIT issues.
      
      * Add a test for dbox generator.
      
      * Remove unnecessary import.
      
      * Workaround on GeneralizedRCNNTransform to support fixed size input.
      
      * Remove unnecessary random calls from the test.
      
      * Remove more rand calls from the test.
      
      * change mapping and handling of empty labels
      
      * Fix JIT warnings.
      
      * Speed up loss.
      
      * Convert 0-1 dboxes to original size.
      
      * Fix warning.
      
      * Fix tests.
      
      * Update comments.
      
      * Fixing minor bugs.
      
      * Introduce a custom DBoxMatcher.
      
      * Minor refactoring
      
      * Move extra layer definition inside feature extractor.
      
      * handle no bias on init.
      
      * Remove fixed image size limitation
      
      * Change initialization values for bias of classification head.
      
      * Refactoring and update test file.
      
      * Adding ResNet backbone.
      
      * Minor refactoring.
      
      * Remove inheritance of retina and general refactoring.
      
      * SSD should fix the input size.
      
      * Fixing messages and comments.
      
      * Silently ignoring exception if test-only.
      
      * Update comments.
      
      * Update regression loss.
      
      * Restore Xavier init everywhere, update the negative sampling method, change the clipping approach.
      
      * Fixing tests.
      
      * Refactor to move the losses from the Head to the SSD.
      
      * Removing resnet50 ssd version.
      
      * Adding support for best performing backbone and its config.
      
      * Refactor and clean up the API.
      
      * Fix lint
      
      * Update todos and comments.
      
      * Adding RandomHorizontalFlip and RandomIoUCrop transforms.
      
      * Adding necessary checks to our tranforms.
      
      * Adding RandomZoomOut.
      
      * Adding RandomPhotometricDistort.
      
      * Moving Detection transforms to references.
      
      * Update presets
      
      * fix lint
      
      * leave compose and object
      
      * Adding scaling for completeness.
      
      * Adding params in the repr
      
      * Remove unnecessary import.
      
      * minor refactoring
      
      * Remove unnecessary call.
      
      * Give better names to DBox* classes
      
      * Port num_anchors estimation in generator
      
      * Remove rescaling and fix presets
      
      * Add the ability to pass a custom head and refactoring.
      
      * fix lint
      
      * Fix unit-test
      
      * Update todos.
      
      * Change mean values.
      
      * Change the default parameter of SSD to train the full VGG16 and remove the catch of exception for eval only.
      
      * Adding documentation
      
      * Adding weights and updating readmes.
      
      * Update the model weights with a more performing model.
      
      * Adding doc for head.
      
      * Restore import.
      730c5e1e
  30. 09 Feb, 2021 2 commits
  31. 08 Feb, 2021 1 commit
  32. 02 Feb, 2021 1 commit
    • Vasilis Vryniotis's avatar
      Add Quantizable MobilenetV3 architecture for Classification (#3323) · 8317295c
      Vasilis Vryniotis authored
      * Refactoring mobilenetv3 to make code reusable.
      
      * Adding quantizable MobileNetV3 architecture.
      
      * Fix bug on reference script.
      
      * Moving documentation of quantized models in the right place.
      
      * Update documentation.
      
      * Workaround for loading correct weights of quant model.
      
      * Update weight URL and readme.
      
      * Adding eval.
      8317295c
  33. 27 Jan, 2021 1 commit
    • Vasilis Vryniotis's avatar
      Add MobileNetV3 architecture for Segmentation (#3276) · e2db2edd
      Vasilis Vryniotis authored
      * Making _segm_resnet() generic and reusable.
      
      * Adding fcn and deeplabv3 directly on mobilenetv3 backbone.
      
      * Adding tests for segmentation models.
      
      * Rename is_strided with _is_cn.
      
      * Add dilation support on MobileNetV3 for Segmentation.
      
      * Add Lite R-ASPP with MobileNetV3 backbone.
      
      * Add pretrained model weights.
      
      * Removing model fcn_mobilenet_v3_large.
      
      * Adding docs and imports.
      
      * Fixing typo and readme.
      e2db2edd
  34. 19 Jan, 2021 1 commit
  35. 18 Jan, 2021 1 commit
    • Vasilis Vryniotis's avatar
      Add MobileNetV3 architecture for Detection (#3253) · bf211dac
      Vasilis Vryniotis authored
      * Minor refactoring of a private method to make it reusuable.
      
      * Adding a FasterRCNN + MobileNetV3 with & w/o FPN models.
      
      * Reducing Resolution to 320-640 and anchor sizes to 16-256.
      
      * Increase anchor sizes.
      
      * Adding rpn score threshold param on the train script.
      
      * Adding trainable_backbone_layers param on the train script.
      
      * Adding rpn_score_thresh param directly in fasterrcnn_mobilenet_v3_large_fpn.
      
      * Remove fasterrcnn_mobilenet_v3_large prototype and update expected file.
      
      * Update documentation and adding weights.
      
      * Use buildin Identity.
      
      * Fix spelling.
      bf211dac
  36. 14 Jan, 2021 1 commit
    • Vasilis Vryniotis's avatar
      Add MobileNetV3 architecture for Classification (#3252) · 7bf6e7b1
      Vasilis Vryniotis authored
      * Add MobileNetV3 Architecture in TorchVision (#3182)
      
      * Adding implementation of network architecture
      
      * Adding rmsprop support on the train.py
      
      * Adding auto-augment and random-erase in the training scripts.
      
      * Adding support for reduced tail on MobileNetV3.
      
      * Tagging blocks with comments.
      
      * Adding documentation, pre-trained model URL and a minor refactoring.
      
      * Handling better untrained supported models.
      7bf6e7b1
  37. 13 Oct, 2020 1 commit
    • Francisco Massa's avatar
      RetinaNet object detection (take 2) (#2784) · 5bb81c8e
      Francisco Massa authored
      
      
      * Add rough implementation of RetinaNet.
      
      * Move AnchorGenerator to a seperate file.
      
      * Move box similarity to Matcher.
      
      * Expose extra blocks in FPN.
      
      * Expose retinanet in __init__.py.
      
      * Use P6 and P7 in FPN for retinanet.
      
      * Use parameters from retinanet for anchor generation.
      
      * General fixes for retinanet model.
      
      * Implement loss for retinanet heads.
      
      * Output reshaped outputs from retinanet heads.
      
      * Add postprocessing of detections.
      
      * Small fixes.
      
      * Remove unused argument.
      
      * Remove python2 invocation of super.
      
      * Add postprocessing for additional outputs.
      
      * Add missing import of ImageList.
      
      * Remove redundant import.
      
      * Simplify class correction.
      
      * Fix pylint warnings.
      
      * Remove the label adjustment for background class.
      
      * Set default score threshold to 0.05.
      
      * Add weight initialization for regression layer.
      
      * Allow training on images with no annotations.
      
      * Use smooth_l1_loss with beta value.
      
      * Add more typehints for TorchScript conversions.
      
      * Fix linting issues.
      
      * Fix type hints in postprocess_detections.
      
      * Fix type annotations for TorchScript.
      
      * Fix inconsistency with matched_idxs.
      
      * Add retinanet model test.
      
      * Add missing JIT annotations.
      
      * Remove redundant model construction
      
      Make tests pass
      
      * Fix bugs during training on newer PyTorch and unused params in DDP
      
      Needs cleanup and to add back support for images with no annotations
      
      * Cleanup resnet_fpn_backbone
      
      * Use L1 loss for regression
      
      Gives 1mAP improvement over smooth l1
      
      * Disable support for images with no annotations
      
      Need to fix distributed first
      
      * Fix retinanet tests
      
      Need to deduplicate those box checks
      
      * Fix Lint
      
      * Add pretrained model
      
      * Add training info for retinanet
      Co-authored-by: default avatarHans Gaiser <hansg91@gmail.com>
      Co-authored-by: default avatarHans Gaiser <hans.gaiser@robovalley.com>
      Co-authored-by: default avatarHans Gaiser <hans.gaiser@robohouse.com>
      5bb81c8e