1. 08 Oct, 2021 2 commits
  2. 07 Oct, 2021 10 commits
  3. 06 Oct, 2021 5 commits
  4. 05 Oct, 2021 7 commits
  5. 04 Oct, 2021 4 commits
  6. 01 Oct, 2021 4 commits
  7. 30 Sep, 2021 5 commits
  8. 29 Sep, 2021 3 commits
    • Kai Zhang's avatar
      Add RegNet Architecture in TorchVision (#4403) · 194a0846
      Kai Zhang authored
      * initial code
      
      * add SqueezeExcitation
      
      * initial code
      
      * add SqueezeExcitation
      
      * add SqueezeExcitation
      
      * regnet blocks, stems and model definition
      
      * nit
      
      * add fc layer
      
      * use Callable instead of Enum for block, stem and activation
      
      * add regnet_x and regnet_y model build functions, add docs
      
      * remove unused depth
      
      * use BN/activation constructor and ConvBNActivation
      
      * add expected test pkl files
      
      * allow custom activation in SqueezeExcitation
      
      * use ReLU as the default activation
      
      * initial code
      
      * add SqueezeExcitation
      
      * initial code
      
      * add SqueezeExcitation
      
      * add SqueezeExcitation
      
      * regnet blocks, stems and model definition
      
      * nit
      
      * add fc layer
      
      * use Callable instead of Enum for block, stem and activation
      
      * add regnet_x and regnet_y model build functions, add docs
      
      * remove unused depth
      
      * use BN/activation constructor and ConvBNActivation
      
      * reuse SqueezeExcitation from efficientnet
      
      * refactor RegNetParams into BlockParams
      
      * use nn.init, replace np with torch
      
      * update README
      
      * construct model with stem, block, classifier instances
      
      * Revert "construct model with stem, block, classifier instances"
      
      This reverts commit 850f5f3ed01a2a9b36fcbf8405afd6e41d2e58ef.
      
      * remove unused blocks
      
      * support scaled model
      
      * fuse into ConvBNActivation
      
      * make reset_parameters private
      
      * fix type errors
      
      * fix for unit test
      
      * add pretrained weights for 6 variant models, update docs
      194a0846
    • Nicolas Hug's avatar
      c4dc3e02
    • Vasilis Vryniotis's avatar
      Replace MobileNetV3's SqueezeExcitation with EfficientNet's one (#4487) · ff126ae2
      Vasilis Vryniotis authored
      * Reuse EfficientNet SE layer.
      
      * Deprecating the mobilenetv3.SqueezeExcitation layer.
      
      * Passing the right activation on quantization.
      
      * Making strict named param.
      
      * Set default params if missing.
      
      * Fixing typos.
      ff126ae2