"ios/vscode:/vscode.git/clone" did not exist on "5dd7dfe389d292296695fb3c341fdfcedf34afa7"
- 18 May, 2021 1 commit
-
-
Nicolas Hug authored
-
- 17 May, 2021 2 commits
-
-
Nicolas Hug authored
-
Vasilis Vryniotis authored
-
- 13 May, 2021 1 commit
-
-
Vasilis Vryniotis authored
* Converting private parameters to public. * Add kwargs to handle extra params. * Add another kwargs. * Add arguments in _mobilenet_extractor.
-
- 12 May, 2021 1 commit
-
-
Vasilis Vryniotis authored
-
- 11 May, 2021 2 commits
-
-
Vasilis Vryniotis authored
* Partial implementation of SSDlite. * Add normal init and BN hyperparams. * Refactor to keep JIT happy * Completed SSDlite. * Fix lint * Update todos * Add expected file in repo. * Use C4 expansion instead of C4 output. * Change scales formula for Default Boxes. * Add cosine annealing on trainer. * Make T_max count epochs. * Fix test and handle corner-case. * Add support of support width_mult * Add ssdlite presets. * Change ReLU6, [-1,1] rescaling, backbone init & no pretraining. * Use _reduced_tail=True. * Add sync BN support. * Adding the best config along with its weights and documentation. * Make mean/std configurable. * Fix not implemented for half exception
-
Zhiqiang Wang authored
* Refactor grid default boxes with torch.meshgrid * Fix torch jit tracing * Only doing the list multiplication once Co-authored-by:
Francisco Massa <fvsmassa@gmail.com> * Make grid_default_box private as suggested Co-authored-by:
Vasilis Vryniotis <datumbox@users.noreply.github.com> * Replace list multiplication with torch.repeat * Move the clipping into _grid_default_boxes to accelerate Co-authored-by:
Francisco Massa <fvsmassa@gmail.com> Co-authored-by:
Vasilis Vryniotis <datumbox@users.noreply.github.com>
-
- 03 May, 2021 1 commit
-
-
Vasilis Vryniotis authored
-
- 30 Apr, 2021 2 commits
-
-
Vasilis Vryniotis authored
* Early skeleton of API. * Adding MultiFeatureMap and vgg16 backbone. * Making vgg16 backbone same as paper. * Making code generic to support all vggs. * Moving vgg's extra layers a separate class + L2 scaling. * Adding header vgg layers. * Fix maxpool patching. * Refactoring code to allow for support of different backbones & sizes: - Skeleton for Default Boxes generator class - Dynamic estimation of configuration when possible - Addition of types * Complete the implementation of DefaultBox generator. * Replace randn with empty. * Minor refactoring * Making clamping between 0 and 1 optional. * Change xywh to xyxy encoding. * Adding parameters and reusing objects in constructor. * Temporarily inherit from Retina to avoid dup code. * Implement forward methods + temp workarounds to inherit from retina. * Inherit more methods from retinanet. * Fix type error. * Add Regression loss. * Fixing JIT issues. * Change JIT workaround to minimize new code. * Fixing initialization bug. * Add classification loss. * Update todos. * Add weight loading support. * Support SSD512. * Change kernel_size to get output size 1x1 * Add xavier init and refactoring. * Adding unit-tests and fixing JIT issues. * Add a test for dbox generator. * Remove unnecessary import. * Workaround on GeneralizedRCNNTransform to support fixed size input. * Remove unnecessary random calls from the test. * Remove more rand calls from the test. * change mapping and handling of empty labels * Fix JIT warnings. * Speed up loss. * Convert 0-1 dboxes to original size. * Fix warning. * Fix tests. * Update comments. * Fixing minor bugs. * Introduce a custom DBoxMatcher. * Minor refactoring * Move extra layer definition inside feature extractor. * handle no bias on init. * Remove fixed image size limitation * Change initialization values for bias of classification head. * Refactoring and update test file. * Adding ResNet backbone. * Minor refactoring. * Remove inheritance of retina and general refactoring. * SSD should fix the input size. * Fixing messages and comments. * Silently ignoring exception if test-only. * Update comments. * Update regression loss. * Restore Xavier init everywhere, update the negative sampling method, change the clipping approach. * Fixing tests. * Refactor to move the losses from the Head to the SSD. * Removing resnet50 ssd version. * Adding support for best performing backbone and its config. * Refactor and clean up the API. * Fix lint * Update todos and comments. * Adding RandomHorizontalFlip and RandomIoUCrop transforms. * Adding necessary checks to our tranforms. * Adding RandomZoomOut. * Adding RandomPhotometricDistort. * Moving Detection transforms to references. * Update presets * fix lint * leave compose and object * Adding scaling for completeness. * Adding params in the repr * Remove unnecessary import. * minor refactoring * Remove unnecessary call. * Give better names to DBox* classes * Port num_anchors estimation in generator * Remove rescaling and fix presets * Add the ability to pass a custom head and refactoring. * fix lint * Fix unit-test * Update todos. * Change mean values. * Change the default parameter of SSD to train the full VGG16 and remove the catch of exception for eval only. * Adding documentation * Adding weights and updating readmes. * Update the model weights with a more performing model. * Adding doc for head. * Restore import.
-
Prabhat Roy authored
* Refactored set_cell_anchors() in AnchorGenerator * Addressed review comment * Fixed test failure
-
- 29 Apr, 2021 1 commit
-
-
Prabhat Roy authored
-
- 28 Apr, 2021 1 commit
-
-
Zhiqiang Wang authored
* Keep consistency of ConvBNActivation * Simplify using the Python3 idiom Co-authored-by:
Vasilis Vryniotis <datumbox@users.noreply.github.com> Co-authored-by:
Vasilis Vryniotis <datumbox@users.noreply.github.com>
-
- 27 Apr, 2021 2 commits
-
-
Vasilis Vryniotis authored
-
Aditya Oke authored
Co-authored-by:Vasilis Vryniotis <datumbox@users.noreply.github.com>
-
- 19 Apr, 2021 1 commit
-
-
Nicolas Hug authored
-
- 16 Apr, 2021 1 commit
-
-
Prabhat Roy authored
-
- 09 Apr, 2021 1 commit
-
-
Vasilis Vryniotis authored
* Make two methods as similar as possible. * Introducing conditional fake casting. * Change the casting mechanism.
-
- 08 Apr, 2021 1 commit
-
-
Vasilis Vryniotis authored
-
- 07 Apr, 2021 1 commit
-
-
Aditya Oke authored
-
- 30 Mar, 2021 1 commit
-
-
Nicolas Hug authored
* Update URLS of detection models * Empty commit after setting read permission on S3 Co-authored-by:Francisco Massa <fvsmassa@gmail.com>
-
- 20 Mar, 2021 2 commits
-
-
Nicolas Hug authored
Co-authored-by:Vasilis Vryniotis <datumbox@users.noreply.github.com>
-
urmi22 authored
Co-authored-by:
urmi22 <debjanimazumder22@example.com> Co-authored-by:
Vasilis Vryniotis <datumbox@users.noreply.github.com>
-
- 10 Mar, 2021 1 commit
-
-
Nicolas Hug authored
-
- 26 Feb, 2021 1 commit
-
-
Jithendra Paruchuri authored
Current implementation is generating bad graph after onnx conversion. So replacing with flatten like in mobilenetv3 code. Co-authored-by:Vasilis Vryniotis <datumbox@users.noreply.github.com>
-
- 22 Feb, 2021 1 commit
-
-
Nicolas Hug authored
* Specify coordinate constraints * some more * flake8
-
- 15 Feb, 2021 1 commit
-
-
Vasilis Vryniotis authored
* Avoid freezing bn1 if all layers are trainable. * Remove misleading comments.
-
- 09 Feb, 2021 2 commits
-
-
Vasilis Vryniotis authored
-
Vasilis Vryniotis authored
* Adding TODO placeholders. * More placeholders. * Add MobileNetV3 small pre-trained weights. * Remove placeholders.
-
- 04 Feb, 2021 1 commit
-
-
Francisco Massa authored
-
- 02 Feb, 2021 1 commit
-
-
Vasilis Vryniotis authored
* Refactoring mobilenetv3 to make code reusable. * Adding quantizable MobileNetV3 architecture. * Fix bug on reference script. * Moving documentation of quantized models in the right place. * Update documentation. * Workaround for loading correct weights of quant model. * Update weight URL and readme. * Adding eval.
-
- 29 Jan, 2021 2 commits
-
-
vfdev authored
Disable pretrained backbone downloading if pretrained is True Co-authored-by:Vasilis Vryniotis <datumbox@users.noreply.github.com>
-
Nicolas Hug authored
* Document undodcumented parameters * remove setup.cfg changes * Properly pass normalize down instead of deprecating it * Fix flake8 * Add new CI check * Fix type spec * Leave normalize be part of kwargs Co-authored-by:Vasilis Vryniotis <datumbox@users.noreply.github.com>
-
- 27 Jan, 2021 2 commits
-
-
Vasilis Vryniotis authored
* Making _segm_resnet() generic and reusable. * Adding fcn and deeplabv3 directly on mobilenetv3 backbone. * Adding tests for segmentation models. * Rename is_strided with _is_cn. * Add dilation support on MobileNetV3 for Segmentation. * Add Lite R-ASPP with MobileNetV3 backbone. * Add pretrained model weights. * Removing model fcn_mobilenet_v3_large. * Adding docs and imports. * Fixing typo and readme.
-
Francisco Massa authored
Removes deprecation warning
-
- 26 Jan, 2021 1 commit
-
-
Nicolas Hug authored
Co-authored-by:Vasilis Vryniotis <datumbox@users.noreply.github.com>
-
- 22 Jan, 2021 1 commit
-
-
Nicolas Hug authored
-
- 21 Jan, 2021 1 commit
-
-
Anirudh authored
-
- 20 Jan, 2021 2 commits
-
-
Alessio Falai authored
Co-authored-by:Vasilis Vryniotis <datumbox@users.noreply.github.com>
-
Max Frei authored
* Fixed warning. UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and now uses scale_factor directly, instead of relying on the computed output size. If you wish to restore the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. * Aligned _resize_image_and_masks_onnx. Co-authored-by:Francisco Massa <fvsmassa@gmail.com>
-
- 19 Jan, 2021 1 commit
-
-
Vasilis Vryniotis authored
* Tag fasterrcnn mobilenetv3 model with 320, add new inference config that makes it 2x faster sacrificing a bit of mAP. * Add a high resolution fasterrcnn mobilenetv3 model. * Update tests and expected values.
-