"src/vscode:/vscode.git/clone" did not exist on "9d8943b7e7361e8527fc662d9769707087c4bad6"
  1. 15 Sep, 2022 1 commit
    • Ponku's avatar
      add crestereo implementation (#6310) · 1c3eedc4
      Ponku authored
      
      
      * crestereo draft implementation
      
      * minor model fixes. positional embedding changes.
      
      * aligned base configuration with paper
      
      * Adressing comments
      
      * Broke down Adaptive Correlation Layer. Adressed some other commets.
      
      * adressed some nits
      
      * changed search size, added output channels to model attrs
      
      * changed weights naming
      
      * changed from iterations to num_iters
      
      * removed _make_coords, adressed comments
      
      * fixed jit test
      
      * config nit
      
      * Changed device arg to str
      Co-authored-by: default avatarJoao Gomes <jdsgomes@fb.com>
      Co-authored-by: default avatarYosuaMichael <yosuamichaelm@gmail.com>
      1c3eedc4
  2. 19 Aug, 2022 1 commit
    • Sophia Zhi's avatar
      Add the S3D architecture to TorchVision (#6412) · 6de7021e
      Sophia Zhi authored
      
      
      * S3D initial commit
      
      * add model builder code and docstrings
      
      * change classifier submodule, populate weights enum
      
      * fix change of block args from List[List[int]] to ints
      
      * add VideoClassification to transforms
      
      * edit weights url for testing, add s3d to models.video init
      
      * norm_layer changes
      
      * norm_layer and args fix
      
      * Overwrite default dropout
      
      * Remove docs from internal submodules.
      
      * Fix tests
      
      * Adding documentation.
      
      * Link doc from main models.rst
      
      * Fix min_temporal_size
      
      * Adding crop/resize parameters in references script
      
      * Release weights.
      
      * Refactor dropout.
      
      * Adding the weights table in the doc
      Co-authored-by: default avatarVasilis Vryniotis <datumbox@users.noreply.github.com>
      Co-authored-by: default avatarVasilis Vryniotis <vvryniotis@fb.com>
      6de7021e
  3. 10 Aug, 2022 2 commits
    • Local State's avatar
      Add SwinV2 (#6246) · 5521e9d0
      Local State authored
      
      
      * init submit
      
      * fix typo
      
      * support ufmt and mypy
      
      * fix 2 unittest errors
      
      * fix ufmt issue
      
      * Apply suggestions from code review
      Co-authored-by: default avatarVasilis Vryniotis <datumbox@users.noreply.github.com>
      
      * unify codes
      
      * fix meshgrid indexing
      
      * fix a bug
      
      * fix type check
      
      * add type_annotation
      
      * add slow model
      
      * fix device issue
      
      * fix ufmt issue
      
      * add expect pickle file
      
      * fix jit script issue
      
      * fix type check
      
      * keep consistent argument order
      
      * add support for pretrained_window_size
      
      * avoid code duplication
      
      * a better code reuse
      
      * update window_size argument
      
      * make permute and flatten operations modular
      
      * add PatchMergingV2
      
      * modify expect.pkl
      
      * use None as default argument value
      
      * fix type check
      
      * fix indent
      
      * fix window_size (temporarily)
      
      * remove "v2_" related prefix and add v2 builder
      
      * remove v2 builder
      
      * keep default value consistent with official repo
      
      * deprecate dropout
      
      * deprecate pretrained_window_size
      
      * fix dynamic padding edge case
      
      * remove unused imports
      
      * remove doc modification
      
      * Revert "deprecate dropout"
      
      This reverts commit 8a13f932815ae25655c07430d52929f86b1ca479.
      
      * Revert "fix dynamic padding edge case"
      
      This reverts commit 1c7579cb1bd7bf2f0f94907f39bee6ed707a97a8.
      
      * remove unused kwargs
      
      * add downsample docs
      
      * revert block default value
      
      * revert argument order change
      
      * explicitly specify start_dim
      
      * add small and base variants
      
      * add expect files and slow_models
      
      * Add model weights and documentation for swin v2
      
      * fix lint
      
      * fix end of files line
      Co-authored-by: default avatarVasilis Vryniotis <datumbox@users.noreply.github.com>
      Co-authored-by: default avatarJoao Gomes <jdsgomes@fb.com>
      5521e9d0
    • Vasilis Vryniotis's avatar
      Add support of MViTv2 video variants (#6373) · 7e8186e0
      Vasilis Vryniotis authored
      * Extending to support MViTv2
      
      * Fix docs, mypy and linter
      
      * Refactor the relative positional code.
      
      * Code refactoring.
      
      * Rename vars.
      
      * Update docs.
      
      * Replace assert with exception.
      
      * Updat docs.
      
      * Minor refactoring.
      
      * Remove the square input limitation.
      
      * Moving methods around.
      
      * Modify the shortcut in the attention layer.
      
      * Add ported weights.
      
      * Introduce a `residual_cls` config on the attention layer.
      
      * Make the patch_embed kernel/padding/stride configurable.
      
      * Apply changes from code-review.
      
      * Remove stale todo.
      7e8186e0
  4. 24 Jun, 2022 1 commit
    • Vasilis Vryniotis's avatar
      Add MViT architecture in TorchVision (#6198) · fb7f9a16
      Vasilis Vryniotis authored
      * Adding MViT v2 architecture (#6105)
      
      * Adding mvitv2 architecture
      
      * Fixing memory issues on tests and minor refactorings.
      
      * Adding input validation
      
      * Adding docs and minor refactoring
      
      * Add `min_temporal_size` in the supported meta-data.
      
      * Switch Tuple[int, int, int] with List[int] to support easier the 2D case
      
      * Adding more docs and references
      
      * Change naming conventions of classes to follow the same pattern as MobileNetV3
      
      * Fix test breakage.
      
      * Update todos
      
      * Performance optimizations.
      
      * Add support to MViT v1 (#6179)
      
      * Switch implementation to v1 variant.
      
      * Fix docs
      
      * Adding back a v2 pseudovariant
      
      * Changing the way the network are configured.
      
      * Temporarily removing v2
      
      * Adding weights.
      
      * Expand _squeeze/_unsqueeze to support arbitrary dims.
      
      * Update references script.
      
      * Fix tests.
      
      * Fixing frames and preprocessing.
      
      * Fix std/mean values in transforms.
      
      * Add permanent Dropout and update the weights.
      
      * Update accuracies.
      
      * Fix documentation
      
      * Remove unnecessary expected file.
      
      * Skip big model test
      
      * Rewrite the configuration logic to reduce LOC.
      
      * Fix mypy
      fb7f9a16
  5. 23 Jun, 2022 1 commit
    • YosuaMichael's avatar
      Add raft-stereo model to prototype/models (#6107) · 11caf37a
      YosuaMichael authored
      * Add rough raft-stereo implementation on prototype/models
      
      * Add standard raft_stereo builder, and modify context_encoder to be more similar with original implementation
      
      * Follow original implementation on pre-convolve context
      
      * Fix to make sure we can load original implementation weight and got same output
      
      * reusing component from raft
      
      * Make the raft_stereo_fast able to load original weight implementation
      
      * Format with ufmt and update some comment
      
      * Use raft FlowHead
      
      * clean up comments
      
      * Remove unnecessary import and use ufmt format
      
      * Add __all__ and more docs for RaftStereo class
      
      * Only accept param and not module for raft stereo builder
      
      * Cleanup comment
      
      * Adding typing to raft_stereo
      
      * Update some of raft code and reuse on raft stereo
      
      * Use bool instead of int
      
      * Make standard raft_stereo model jit scriptable
      
      * Make the function _make_out_layer using boolean with_block and init the block_layer with identity
      
      * Separate corr_block into two modules for pyramid and building corr features
      
      * Use tuple if input is not variable size, also remove default value if using List
      
      * Format using ufmt and update ConvGRU to not inherit from raft in order to satisfy both jit script and mypy
      
      * Change RaftStereo docs input type
      
      * Ufmt format raft
      
      * revert back convgru to see mypy errors, add test for jit and fx, make the model fx compatible
      
      * ufmt format
      
      * Specify device for new tensor, dont init module then overwrite and put if-else instead
      
      * Ignore mypy problem on override, put back num_iters on forward
      
      * Revert some effort to make it fx compatible but unnecessary now
      
      * refactor code and remove num_iters from RaftStereo constructor
      
      * Change to raft_stereo_realtime, and specify device directly for tensor creation
      
      * Add description for raft_stereo_realtime
      
      * Update the test for raft_stereo
      
      * Fix raft stereo prototype test to properly test jit script
      
      * Ufmt format
      
      * Test against expected file, change name from raft_stereo to raft_stereo_builder to prevent import error
      
      * Revert __init__.py changes
      
      * Add default value for non-list param on model builder
      
      * Add checking on out_with_block length, add more docs on the encoder
      
      * Use base instead of basic since it is more commonly used
      
      * rename expect file to base as well
      
      * rename on test
      
      * Revert the revert of __init__.py, also revert the adding default value to _raft_stereo to follow the standard pattern
      
      * ufmt format __init__.py
      11caf37a
  6. 24 May, 2022 1 commit
  7. 19 May, 2022 2 commits
  8. 09 May, 2022 1 commit
    • YosuaMichael's avatar
      Adding resnext101 64x4d model (#5935) · 4c02f103
      YosuaMichael authored
      * Add resnext101_64x4d model definition
      
      * Add test for resnext101_64x4d
      
      * Add resnext101_64x4d weight
      
      * Update checkpoint to use EMA weigth
      
      * Add quantization model signature for resnext101_64x4d
      
      * Fix class name and update accuracy using 1 gpu and batch_size=1
      
      * Apply ufmt
      
      * Update the quantized weight and accuracy that we still keep the training log
      
      * Add quantized expect file
      
      * Update docs and fix acc1
      
      * Add recipe for quantized to PR
      
      * Update models.rst
      4c02f103
  9. 28 Apr, 2022 1 commit
  10. 27 Apr, 2022 2 commits
    • Joao Gomes's avatar
      Add swin_t to slow list (#5902) · b53c91d0
      Joao Gomes authored
      
      
      * Add swin_t to slow list
      
      * apply ufmt
      
      * update expect for swin_t
      Co-authored-by: default avatarVasilis Vryniotis <datumbox@users.noreply.github.com>
      b53c91d0
    • Hu Ye's avatar
      Adding Swin Transformer architecture (#5491) · e288f6ca
      Hu Ye authored
      
      
      * add swin transformer
      
      * Update swin_transformer.py
      
      * Update swin_transformer.py
      
      * fix lint
      
      * fix lint
      
      * refactor code
      
      * add swin_transformer
      
      * Update swin_transformer.py
      
      * fix bug
      
      * refactor code
      
      * fix lint
      
      * update init_weights
      
      * move shift_window into attention
      
      * refactor code
      
      * fix bug
      
      * Update swin_transformer.py
      
      * Update swin_transformer.py
      
      * fix lint
      
      * add patch_merge
      
      * fix bug
      
      * Update swin_transformer.py
      
      * Update swin_transformer.py
      
      * Update swin_transformer.py
      
      * refactor code
      
      * Update swin_transformer.py
      
      * refactor code
      
      * fix lint
      
      * refactor code
      
      * add swin_tiny
      
      * add swin_tiny.pkl
      
      * fix lint
      
      * Delete ModelTester.test_swin_tiny_expect.pkl
      
      * add swin_tiny
      
      * add
      
      * add Optional to bias
      
      * update init weights
      
      * update init_weights and add no weight decay
      
      * add no weight decay
      
      * add set_weight_decay
      
      * add set_weight_decay
      
      * fix lint
      
      * fix lint
      
      * add lr_cos_min
      
      * add other swin models
      
      * Update torchvision/models/swin_transformer.py
      Co-authored-by: default avatarVasilis Vryniotis <datumbox@users.noreply.github.com>
      
      * refactor doc
      
      * Update utils.py
      
      * Update train.py
      
      * Update train.py
      
      * Update swin_transformer.py
      
      * update model builder
      
      * fix lint
      
      * add
      
      * Update torchvision/models/swin_transformer.py
      Co-authored-by: default avatarVasilis Vryniotis <datumbox@users.noreply.github.com>
      
      * Update torchvision/models/swin_transformer.py
      Co-authored-by: default avatarVasilis Vryniotis <datumbox@users.noreply.github.com>
      
      * update other model
      
      * simplify the model name just like ViT
      
      * add lr_cos_min
      
      * fix lint
      
      * fix lint
      
      * Update swin_transformer.py
      
      * Update swin_transformer.py
      
      * Update swin_transformer.py
      
      * Delete ModelTester.test_swin_tiny_expect.pkl
      
      * add swin_t
      
      * refactor code
      
      * Update train.py
      
      * add swin_s
      
      * ignore a error of mypy
      
      * Update swin_transformer.py
      
      * fix lint
      
      * add swin_b
      
      * add swin_l
      
      * refactor code
      
      * Update train.py
      
      * move relative_position_bias to __init__
      
      * fix formatting
      
      * Revert "fix formatting"
      
      This reverts commit 41faba232668f7ac4273a0cf632c0d0130c7ce9c.
      
      * Revert "move relative_position_bias to __init__"
      
      This reverts commit f0615440bf18617dc0e5dc4839bd5ed27e5ed010.
      
      * refactor code
      
      * Remove deprecated meta-data from `_COMMON_META`
      
      * fix linter
      
      * add pretrained weights for swin_t
      
      * fix format
      
      * apply ufmt
      
      * add documentation
      
      * update references README
      
      * adding new style docs
      
      * update pre-trained weights values
      
      * remove other variants
      
      * fix typo
      
      * Remove expect for the variants not yet supported
      Co-authored-by: default avatarVasilis Vryniotis <datumbox@users.noreply.github.com>
      Co-authored-by: default avatarJoao Gomes <jdsgomes@fb.com>
      e288f6ca
  11. 05 Apr, 2022 2 commits
    • Vasilis Vryniotis's avatar
      Post-paper Detection Optimizations (#5444) · 08cc9a7f
      Vasilis Vryniotis authored
      * Use frozen BN only if pre-trained.
      
      * Add LSJ and ability to from scratch training.
      
      * Fixing formatter
      
      * Adding `--opt` and `--norm-weight-decay` support in Detection.
      
      * Fix error message
      
      * Make ScaleJitter proportional.
      
      * Adding more norm layers in split_normalization_params.
      
      * Add FixedSizeCrop
      
      * Temporary fix for fill values on PIL
      
      * Fix the bug on fill.
      
      * Add RandomShortestSize.
      
      * Skip resize when an augmentation method is used.
      
      * multiscale in [480, 800]
      
      * Add missing star
      
      * Add new RetinaNet variant.
      
      * Add tests.
      
      * Update expected file for old retina
      
      * Fixing tests
      
      * Add FrozenBN to retinav2
      
      * Fix network initialization issues
      
      * Adding BN support in MaskRCNNHeads and FPN
      
      * Adding support of FasterRCNNHeads
      
      * Introduce norm_layers in backbone utils.
      
      * Bigger RPN head + 2x rcnn v2 models.
      
      * Adding gIoU support to retinanet
      
      * Fix assert
      
      * Add back nesterov momentum
      
      * Rename and extend `FastRCNNConvFCHead` to support arbitrary FCs
      
      * Fix linter
      08cc9a7f
    • YosuaMichael's avatar
      Adding the huge vision transformer from SWAG (#5721) · 63576c9f
      YosuaMichael authored
      
      
      * Add vit_b_16_swag
      
      * Better handling idiom for image_size, edit test_extended_model to handle case where number of param differ from default due to different image size input
      
      * Update the accuracy to the experiment result on torchvision model
      
      * Fix typo missing underscore
      
      * raise exception instead of torch._assert, add back publication year (accidentally deleted)
      
      * Add license information on meta and readme
      
      * Improve wording and fix typo for pretrained model license in readme
      
      * Add vit_l_16 weight
      
      * Update README.rst
      Co-authored-by: default avatarVasilis Vryniotis <datumbox@users.noreply.github.com>
      
      * Update the accuracy meta on vit_l_16_swag model to result from our experiment
      
      * Add vit_h_14_swag model
      
      * Add accuracy from experiments
      
      * Add to vit_h_16 model to hubconf.py
      
      * Add docs and expected pkl file for test
      
      * Remove legacy compatibility for ViT_H_14 model
      Co-authored-by: default avatarVasilis Vryniotis <datumbox@users.noreply.github.com>
      
      * Test vit_h_14 with smaller image_size to speedup the test
      Co-authored-by: default avatarVasilis Vryniotis <datumbox@users.noreply.github.com>
      63576c9f
  12. 09 Mar, 2022 1 commit
    • Vasilis Vryniotis's avatar
      Speed up Model tests by 20% (#5574) · d0dede0e
      Vasilis Vryniotis authored
      * Measuring execution times of models.
      
      * Speed up models by avoiding re-estimation of eager output
      
      * Fixing linter
      
      * Reduce input size for big models
      
      * Speed up jit check method.
      
      * Add simple jitscript fallback check for flaky models.
      
      * Restore pytest filtering
      
      * Fixing linter
      d0dede0e
  13. 02 Mar, 2022 1 commit
    • Vasilis Vryniotis's avatar
      Adding EfficientNetV2 architecture (#5450) · e6d82f7d
      Vasilis Vryniotis authored
      * Extend the EfficientNet class to support v1 and v2.
      
      * Refactor config/builder methods and add prototype builders
      
      * Refactoring weight info.
      
      * Update dropouts based on TF config ref
      
      * Update BN eps on TF base_config
      
      * Use Conv2dNormActivation.
      
      * Adding pre-trained weights for EfficientNetV2-s
      
      * Add Medium and Large weights
      
      * Update stats with single batch run.
      
      * Add accuracies in the docs.
      e6d82f7d
  14. 01 Feb, 2022 1 commit
    • Vasilis Vryniotis's avatar
      Adding more ConvNeXt variants + Speed optimizations (#5253) · 82929ae1
      Vasilis Vryniotis authored
      * Refactor model builder
      
      * Add 3 more convnext variants.
      
      * Adding weights for convnext_small.
      
      * Fix minor bug.
      
      * Fix number of parameters for small model.
      
      * Adding weights for the base variant.
      
      * Adding weights for the large variant.
      
      * Simplify LayerNorm2d implementation.
      
      * Optimize speed of CNBlock.
      
      * Repackage weights.
      82929ae1
  15. 29 Jan, 2022 1 commit
    • Yiwen Song's avatar
      [ViT] Adding conv_stem support (#5226) · 7d868aa6
      Yiwen Song authored
      * Adding conv_stem support
      
      * fix lint
      
      * bug fix
      
      * address comments
      
      * fix after merge
      
      * adding back checking lines
      
      * fix failing tests
      
      * fix iignore
      
      * add unittest & address comments
      
      * fix memory issue
      
      * address comments
      7d868aa6
  16. 23 Jan, 2022 1 commit
  17. 21 Jan, 2022 1 commit
    • Hu Ye's avatar
      add FCOS (#4961) · 7d4bdd43
      Hu Ye authored
      
      
      * add fcos
      
      * update fcos
      
      * add giou_loss
      
      * add BoxLinearCoder for FCOS
      
      * add full code for FCOS
      
      * add giou loss
      
      * add fcos
      
      * add __all__
      
      * Fixing lint
      
      * Fixing lint in giou_loss.py
      
      * Add typing annotation to fcos
      
      * Add trained checkpoints
      
      * Use partial to replace lambda
      
      * Minor fixes to docstrings
      
      * Apply ufmt format
      
      * Fixing docstrings
      
      * Fixing jit scripting
      
      * Minor fixes to docstrings
      
      * Fixing jit scripting
      
      * Ignore mypy in fcos
      
      * Fixing trained checkpoints
      
      * Fixing unit-test of jit script
      
      * Fixing docstrings
      
      * Add test/expect/ModelTester.test_fcos_resnet50_fpn_expect.pkl
      
      * Fixing test_detection_model_trainable_backbone_layers
      
      * Update test_fcos_resnet50_fpn_expect.pkl
      
      * rename stride to box size
      
      * remove TODO and fix some typo
      
      * merge some code for better
      
      * impove the comments
      
      * remove decode and encode of BoxLinearCoder
      
      * remove some unnecessary hints
      
      * use the default value in detectron2.
      
      * update doc
      
      * Add unittest for BoxLinearCoder
      
      * Add types in FCOS
      
      * Add docstring for BoxLinearCoder
      
      * Minor fix for the docstring
      
      * update doc
      
      * Update fcos_resnet50_fpn_coco pretained weights url
      
      * Update torchvision/models/detection/fcos.py
      Co-authored-by: default avatarVasilis Vryniotis <datumbox@users.noreply.github.com>
      
      * Update torchvision/models/detection/fcos.py
      Co-authored-by: default avatarVasilis Vryniotis <datumbox@users.noreply.github.com>
      
      * Update torchvision/models/detection/fcos.py
      Co-authored-by: default avatarVasilis Vryniotis <datumbox@users.noreply.github.com>
      
      * Update torchvision/models/detection/fcos.py
      Co-authored-by: default avatarVasilis Vryniotis <datumbox@users.noreply.github.com>
      
      * Add FCOS model documentation
      
      * Fix typo in FCOS documentation
      
      * Add fcos to the prototype builder
      
      * Capitalize COCO_V1
      
      * Fix params of fcos
      
      * fix bug for partial
      
      * Fixing docs indentation
      
      * Fixing docs format in giou_loss
      
      * Adopt Reference for GIoU Loss
      
      * Rename giou_loss to generalized_box_iou_loss
      
      * remove overwrite_eps
      
      * Update AP test values
      
      * Minor fixes for the docs
      
      * Minor fixes for the docs
      
      * Update torchvision/models/detection/fcos.py
      Co-authored-by: default avatarZhiqiang Wang <zhiqwang@foxmail.com>
      
      * Update torchvision/prototype/models/detection/fcos.py
      Co-authored-by: default avatarZhiqiang Wang <zhiqwang@foxmail.com>
      Co-authored-by: default avatarzhiqiang <zhiqwang@foxmail.com>
      Co-authored-by: default avatarJoao Gomes <jdsgomes@fb.com>
      Co-authored-by: default avatarVasilis Vryniotis <datumbox@users.noreply.github.com>
      Co-authored-by: default avatarJoao Gomes <joaopsgomes@gmail.com>
      7d4bdd43
  18. 20 Jan, 2022 1 commit
    • Vasilis Vryniotis's avatar
      Adding ConvNeXt architecture in prototype (#5197) · afda28ac
      Vasilis Vryniotis authored
      * Adding CNBlock and skeleton architecture
      
      * Completed implementation.
      
      * Adding model in prototypes.
      
      * Add test and minor refactor for JIT.
      
      * Fix mypy.
      
      * Fixing naming conventions.
      
      * Fixing tests.
      
      * Fix stochastic depth percentages.
      
      * Adding stochastic depth to tiny variant.
      
      * Minor refactoring and adding comments.
      
      * Adding weights.
      
      * Update default weights.
      
      * Fix transforms issue
      
      * Move convnext to prototype.
      
      * linter fix
      
      * fix docs
      
      * Addressing code review comments.
      afda28ac
  19. 19 Jan, 2022 1 commit
  20. 13 Jan, 2022 1 commit
  21. 06 Dec, 2021 1 commit
  22. 27 Nov, 2021 1 commit
    • Yiwen Song's avatar
      Adding ViT to torchvision/models (#4594) · 47281bbf
      Yiwen Song authored
      
      
      * [vit] Adding ViT to torchvision/models
      
      * adding pre-logits layer + resolving comments
      
      * Fix the model attribute bug
      
      * Change version to arch
      
      * fix failing unittests
      
      * remove useless prints
      
      * reduce input size to fix unittests
      
      * Increase windows-cpu executor to 2xlarge
      
      * Use `batch_first=True` and remove classifier
      
      * Change resource_class back to xlarge
      
      * Remove vit_h_14
      
      * Remove vit_h_14 from __all__
      
      * Move vision_transformer.py into prototype
      
      * Fix formatting issue
      
      * remove arch in builder
      
      * Fix type err in model builder
      
      * address comments and trigger unittests
      
      * remove the prototype import in torchvision.models
      
      * Adding vit back to models to trigger CircleCI test
      
      * fix test_jit_forward_backward
      
      * Move all to prototype.
      
      * Adopt new helper methods and fix prototype tests.
      
      * Remove unused import.
      Co-authored-by: default avatarVasilis Vryniotis <datumbox@users.noreply.github.com>
      Co-authored-by: default avatarVasilis Vryniotis <vvryniotis@fb.com>
      47281bbf
  23. 20 Oct, 2021 1 commit
    • Vasilis Vryniotis's avatar
      Refactor the backbone builders of detection (#4656) · d18c4872
      Vasilis Vryniotis authored
      * Refactoring resnet_fpn backbone building.
      
      * Passing the change to *_rcnn and retinanet.
      
      * Applying for faster_rcnn + mobilenetv3
      
      * Applying for ssdlite + mobilenetv3
      
      * Applying for ssd + vgg16
      
      * Update the expected file of retinanet_resnet50_fpn to fix order of initialization.
      
      * Adding full model weights for the VGG16 features.
      d18c4872
  24. 13 Oct, 2021 1 commit
  25. 29 Sep, 2021 1 commit
    • Kai Zhang's avatar
      Add RegNet Architecture in TorchVision (#4403) · 194a0846
      Kai Zhang authored
      * initial code
      
      * add SqueezeExcitation
      
      * initial code
      
      * add SqueezeExcitation
      
      * add SqueezeExcitation
      
      * regnet blocks, stems and model definition
      
      * nit
      
      * add fc layer
      
      * use Callable instead of Enum for block, stem and activation
      
      * add regnet_x and regnet_y model build functions, add docs
      
      * remove unused depth
      
      * use BN/activation constructor and ConvBNActivation
      
      * add expected test pkl files
      
      * allow custom activation in SqueezeExcitation
      
      * use ReLU as the default activation
      
      * initial code
      
      * add SqueezeExcitation
      
      * initial code
      
      * add SqueezeExcitation
      
      * add SqueezeExcitation
      
      * regnet blocks, stems and model definition
      
      * nit
      
      * add fc layer
      
      * use Callable instead of Enum for block, stem and activation
      
      * add regnet_x and regnet_y model build functions, add docs
      
      * remove unused depth
      
      * use BN/activation constructor and ConvBNActivation
      
      * reuse SqueezeExcitation from efficientnet
      
      * refactor RegNetParams into BlockParams
      
      * use nn.init, replace np with torch
      
      * update README
      
      * construct model with stem, block, classifier instances
      
      * Revert "construct model with stem, block, classifier instances"
      
      This reverts commit 850f5f3ed01a2a9b36fcbf8405afd6e41d2e58ef.
      
      * remove unused blocks
      
      * support scaled model
      
      * fuse into ConvBNActivation
      
      * make reset_parameters private
      
      * fix type errors
      
      * fix for unit test
      
      * add pretrained weights for 6 variant models, update docs
      194a0846
  26. 26 Aug, 2021 1 commit
    • Vasilis Vryniotis's avatar
      Add EfficientNet Architecture in TorchVision (#4293) · 37a9ee5b
      Vasilis Vryniotis authored
      * Adding code skeleton
      
      * Adding MBConvConfig.
      
      * Extend SqueezeExcitation to support custom min_value and activation.
      
      * Implement MBConv.
      
      * Replace stochastic_depth with operator.
      
      * Adding the rest of the EfficientNet implementation
      
      * Update torchvision/models/efficientnet.py
      
      * Replacing 1st activation of SE with SiLU.
      
      * Adding efficientnet_b3.
      
      * Replace mobilenetv3 assets with custom.
      
      * Switch to standard sigmoid and reconfiguring BN.
      
      * Reconfiguration of efficientnet.
      
      * Add repr
      
      * Add weights.
      
      * Update weights.
      
      * Adding B5-B7 weights.
      
      * Update docs and hubconf.
      
      * Fix doc link.
      
      * Fix typo on comment.
      37a9ee5b
  27. 06 Aug, 2021 1 commit
  28. 27 May, 2021 1 commit
    • Vasilis Vryniotis's avatar
      Speedup the slow tests of detection models (#3929) · 4c563846
      Vasilis Vryniotis authored
      * Speed up keypoint and retina.
      
      * Update keypoint expected file
      
      * Speed up fasterrcnn_resnet50_fpn.
      
      * Speed up maskrcnn_resnet50_fpn.
      
      * Updating params to resolve flakiness.
      
      * limit runs to those 4 tests
      
      * Relaxing precision to resolve flakiness
      
      * Undo test filtering
      4c563846
  29. 11 May, 2021 1 commit
    • Vasilis Vryniotis's avatar
      Add SSDlite architecture with MobileNetV3 backbones (#3757) · 43d77206
      Vasilis Vryniotis authored
      * Partial implementation of SSDlite.
      
      * Add normal init and BN hyperparams.
      
      * Refactor to keep JIT happy
      
      * Completed SSDlite.
      
      * Fix lint
      
      * Update todos
      
      * Add expected file in repo.
      
      * Use C4 expansion instead of C4 output.
      
      * Change scales formula for Default Boxes.
      
      * Add cosine annealing on trainer.
      
      * Make T_max count epochs.
      
      * Fix test and handle corner-case.
      
      * Add support of support width_mult
      
      * Add ssdlite presets.
      
      * Change ReLU6, [-1,1] rescaling, backbone init & no pretraining.
      
      * Use _reduced_tail=True.
      
      * Add sync BN support.
      
      * Adding the best config along with its weights and documentation.
      
      * Make mean/std configurable.
      
      * Fix not implemented for half exception
      43d77206
  30. 30 Apr, 2021 1 commit
    • Vasilis Vryniotis's avatar
      Add SSD architecture with VGG16 backbone (#3403) · 730c5e1e
      Vasilis Vryniotis authored
      * Early skeleton of API.
      
      * Adding MultiFeatureMap and vgg16 backbone.
      
      * Making vgg16 backbone same as paper.
      
      * Making code generic to support all vggs.
      
      * Moving vgg's extra layers a separate class + L2 scaling.
      
      * Adding header vgg layers.
      
      * Fix maxpool patching.
      
      * Refactoring code to allow for support of different backbones & sizes:
      - Skeleton for Default Boxes generator class
      - Dynamic estimation of configuration when possible
      - Addition of types
      
      * Complete the implementation of DefaultBox generator.
      
      * Replace randn with empty.
      
      * Minor refactoring
      
      * Making clamping between 0 and 1 optional.
      
      * Change xywh to xyxy encoding.
      
      * Adding parameters and reusing objects in constructor.
      
      * Temporarily inherit from Retina to avoid dup code.
      
      * Implement forward methods + temp workarounds to inherit from retina.
      
      * Inherit more methods from retinanet.
      
      * Fix type error.
      
      * Add Regression loss.
      
      * Fixing JIT issues.
      
      * Change JIT workaround to minimize new code.
      
      * Fixing initialization bug.
      
      * Add classification loss.
      
      * Update todos.
      
      * Add weight loading support.
      
      * Support SSD512.
      
      * Change kernel_size to get output size 1x1
      
      * Add xavier init and refactoring.
      
      * Adding unit-tests and fixing JIT issues.
      
      * Add a test for dbox generator.
      
      * Remove unnecessary import.
      
      * Workaround on GeneralizedRCNNTransform to support fixed size input.
      
      * Remove unnecessary random calls from the test.
      
      * Remove more rand calls from the test.
      
      * change mapping and handling of empty labels
      
      * Fix JIT warnings.
      
      * Speed up loss.
      
      * Convert 0-1 dboxes to original size.
      
      * Fix warning.
      
      * Fix tests.
      
      * Update comments.
      
      * Fixing minor bugs.
      
      * Introduce a custom DBoxMatcher.
      
      * Minor refactoring
      
      * Move extra layer definition inside feature extractor.
      
      * handle no bias on init.
      
      * Remove fixed image size limitation
      
      * Change initialization values for bias of classification head.
      
      * Refactoring and update test file.
      
      * Adding ResNet backbone.
      
      * Minor refactoring.
      
      * Remove inheritance of retina and general refactoring.
      
      * SSD should fix the input size.
      
      * Fixing messages and comments.
      
      * Silently ignoring exception if test-only.
      
      * Update comments.
      
      * Update regression loss.
      
      * Restore Xavier init everywhere, update the negative sampling method, change the clipping approach.
      
      * Fixing tests.
      
      * Refactor to move the losses from the Head to the SSD.
      
      * Removing resnet50 ssd version.
      
      * Adding support for best performing backbone and its config.
      
      * Refactor and clean up the API.
      
      * Fix lint
      
      * Update todos and comments.
      
      * Adding RandomHorizontalFlip and RandomIoUCrop transforms.
      
      * Adding necessary checks to our tranforms.
      
      * Adding RandomZoomOut.
      
      * Adding RandomPhotometricDistort.
      
      * Moving Detection transforms to references.
      
      * Update presets
      
      * fix lint
      
      * leave compose and object
      
      * Adding scaling for completeness.
      
      * Adding params in the repr
      
      * Remove unnecessary import.
      
      * minor refactoring
      
      * Remove unnecessary call.
      
      * Give better names to DBox* classes
      
      * Port num_anchors estimation in generator
      
      * Remove rescaling and fix presets
      
      * Add the ability to pass a custom head and refactoring.
      
      * fix lint
      
      * Fix unit-test
      
      * Update todos.
      
      * Change mean values.
      
      * Change the default parameter of SSD to train the full VGG16 and remove the catch of exception for eval only.
      
      * Adding documentation
      
      * Adding weights and updating readmes.
      
      * Update the model weights with a more performing model.
      
      * Adding doc for head.
      
      * Restore import.
      730c5e1e
  31. 27 Jan, 2021 1 commit
    • Vasilis Vryniotis's avatar
      Add MobileNetV3 architecture for Segmentation (#3276) · e2db2edd
      Vasilis Vryniotis authored
      * Making _segm_resnet() generic and reusable.
      
      * Adding fcn and deeplabv3 directly on mobilenetv3 backbone.
      
      * Adding tests for segmentation models.
      
      * Rename is_strided with _is_cn.
      
      * Add dilation support on MobileNetV3 for Segmentation.
      
      * Add Lite R-ASPP with MobileNetV3 backbone.
      
      * Add pretrained model weights.
      
      * Removing model fcn_mobilenet_v3_large.
      
      * Adding docs and imports.
      
      * Fixing typo and readme.
      e2db2edd
  32. 25 Jan, 2021 1 commit
  33. 19 Jan, 2021 1 commit
  34. 18 Jan, 2021 1 commit
    • Vasilis Vryniotis's avatar
      Add MobileNetV3 architecture for Detection (#3253) · bf211dac
      Vasilis Vryniotis authored
      * Minor refactoring of a private method to make it reusuable.
      
      * Adding a FasterRCNN + MobileNetV3 with & w/o FPN models.
      
      * Reducing Resolution to 320-640 and anchor sizes to 16-256.
      
      * Increase anchor sizes.
      
      * Adding rpn score threshold param on the train script.
      
      * Adding trainable_backbone_layers param on the train script.
      
      * Adding rpn_score_thresh param directly in fasterrcnn_mobilenet_v3_large_fpn.
      
      * Remove fasterrcnn_mobilenet_v3_large prototype and update expected file.
      
      * Update documentation and adding weights.
      
      * Use buildin Identity.
      
      * Fix spelling.
      bf211dac
  35. 14 Jan, 2021 1 commit
    • Vasilis Vryniotis's avatar
      Add MobileNetV3 architecture for Classification (#3252) · 7bf6e7b1
      Vasilis Vryniotis authored
      * Add MobileNetV3 Architecture in TorchVision (#3182)
      
      * Adding implementation of network architecture
      
      * Adding rmsprop support on the train.py
      
      * Adding auto-augment and random-erase in the training scripts.
      
      * Adding support for reduced tail on MobileNetV3.
      
      * Tagging blocks with comments.
      
      * Adding documentation, pre-trained model URL and a minor refactoring.
      
      * Handling better untrained supported models.
      7bf6e7b1
  36. 09 Nov, 2020 1 commit