- 03 Apr, 2020 1 commit
-
-
Francisco Massa authored
* Add CircleCI job for python lint * Break lint * Fix * Fix lint * Re-enable all tests and remove travis python lint
-
- 31 Mar, 2020 1 commit
-
-
Philip Meier authored
* remove sys.version_info == 2 * remove sys.version_info < 3 * remove from __future__ imports
-
- 23 Mar, 2020 2 commits
-
-
Willie Maddox authored
* Add fill option to RandomPerspective #1972 * Minor fix to docstring syntax * Add _parse_fill() to get fillcolor (#1972) * Minor refactoring as per comments. * Added test for RandomPerspective with fillcolor. * Force perspective transform in test.
-
Danylo Ulianych authored
* F.normalize unsqueeze mean & std if necessary * added tests to F.normalize for 3d mean & std tensors
-
- 29 Jan, 2020 1 commit
-
-
Francisco Massa authored
-
- 22 Jan, 2020 1 commit
-
-
Philip Meier authored
* initial fix * outsourced num bands lookup * fix doc * added pillow version requirement * simplify number of bands extraction * remove unrelated change * remove indirect dependency on pillow>=5.2.0 * extend docstring to transform * bug fix * added test
-
- 10 Jan, 2020 1 commit
-
-
Francisco Massa authored
* Testing CI * Disable tests for Pillow 7
-
- 29 Oct, 2019 1 commit
-
-
pedrofreire authored
* Improve readability of affine transformation code * Make shear transformation area preserving The previous shear implementation did not preserve area, and we implement a version that does. The formula used was verified with the following sympy code: from sympy import Matrix, cos, sin, tan, simplify from sympy.abc import x, y, phi Xs = Matrix( [[1, -tan(x)], [0, 1]] ) Ys = Matrix( [[1, 0], [-tan(y), 1]] ) R = Matrix( [[cos(phi), -sin(phi)], [sin(phi), cos(phi)]] ) RSS = Matrix( [[cos(phi - y)/cos(y), -cos(phi - y)*tan(x)/cos(y) - sin(phi)], [sin(phi - y)/cos(y), -sin(phi - y)*tan(x)/cos(y) + cos(phi)]]) print(simplify(R * Ys * Xs - RSS)) One thing that is not clear (and could be tested) is whether avoiding the explicit products and calculations in _get_inverse_affine_matrix really gives performance benefits - compared to doing the explicit calculation done in _test_transformation. * Use np.matmul instead of @ The @ syntax is not supported in Python 2.
-
- 18 Oct, 2019 1 commit
-
-
F-G Fernandez authored
* test: Updated assert in test_transforms Updated all raw asserts to corresponding unittest.TestCase.assert. See #1483 * test: Fixed linter on test_transforms
-
- 30 Aug, 2019 1 commit
-
-
Francisco Massa authored
* Fix flakiness of test_randomresized_params * Real fix * Reduce number of iters
-
- 09 Jul, 2019 1 commit
-
-
Surgan Jandial authored
* to_pil_image updates * lint * Update test_transforms.py * Update test_transforms.py
-
- 06 Jul, 2019 1 commit
-
-
Zhun Zhong authored
* Fix bug to Random Erasing 1. Avoid forever loop for getting parameters of erase. 2. replace' img_b' by 'img_c', because it indicates the channel. 3. replace v = torch.rand([img_c, h, w]) by v = torch.empty([img_c, h, w], dtype=torch.float32).normal_(). Normally distributed achieves better performance. * add test * Update test_transforms.py * Update transforms.py * Update test_transforms.py * Update transforms.py * Update functional.py
-
- 03 Jul, 2019 1 commit
-
-
ptrblck authored
* initial commit * add more checks, fix lint, fix doc
-
- 28 Jun, 2019 2 commits
-
-
Surgan Jandial authored
* updates on normalize * test fixes * Update test_transforms.py
-
Surgan Jandial authored
* test improved * Update test_transforms.py * behaviour changes RandomErasing * test fixes * linter fix
-
- 24 Jun, 2019 1 commit
-
-
Zhun Zhong authored
* add erase function * add Random Erasing * Update transforms.py * Update transforms.py * add test for random erasing * Update test_transforms.py * fix flake8 * Update test_transforms.py * Update functional.py * Update test_transforms.py * fix bug for per-pixel erasing * Update transforms.py * specific for coordinate (x, y) * add raise TypeError for img * Update transforms.py * Update transforms.rst
-
- 20 Jun, 2019 2 commits
-
-
Geovanni Zhang authored
* fix:error message of to_tensor The error "pic should be PIL Image or ndarray. Got '<numpy.ndarray>'" is confusing. * fix:a clearer function name _is_numpy_image is clearer than _is_numpy_image_dim * fix:add a test case Add a test case in test/test_transforms.py to test the error message * fix:pass ci check * fix:wrong random matrix
-
Francisco Massa authored
-
- 14 Jun, 2019 2 commits
-
-
Francisco Massa authored
* Fix normalize for different dtype than float32 * Fix lint
-
Francisco Massa authored
-
- 13 Jun, 2019 1 commit
-
-
Francisco Massa authored
* Make tests work on fbcode * Lint * Fix rebase error * Properly use get_file_path_2 * Fix wrong use of get_file_path_2 again * Missing import
-
- 22 May, 2019 1 commit
-
-
Soumith Chintala authored
-
- 25 Apr, 2019 1 commit
-
-
Surgan Jandial authored
* final changes * final * linter * test changes * linter * lint * indent * lint * minor changes * parameter added * ci * ci fixes * indent * indent * indent * arg fixed
-
- 09 Apr, 2019 1 commit
-
-
ekka authored
* Update test_transforms.py * Update transforms.py
-
- 25 Mar, 2019 2 commits
-
-
Francisco Massa authored
* Add basic model testing. Also fixes flaky test * Fix flake8
-
ekka authored
* Add Affinetransformation Add Affinetransformation to superseed LinearTransformation * Add test * Add zero mean_vector in LinearTransformation and improved docs * update * minor fix * minor fix2 * fixed flake8 * fix flake8 * fixed transpose syntax * fixed shape of mean_vector in test * fixed test * print est cov and mean * fixed flake8 * debug * reduce num_samples * debug * fixed num_features * fixed rtol for cov * fix __repr__ * Update transforms.py * Update test_transforms.py * Update transforms.py * fix flake8 * Update transforms.py * Update transforms.py * Update transforms.py * Update transforms.py * Changed dim of mean_vector to 1D, doc and removed .numpy () from format_string * Restore test_linear_transformation() * Update test_transforms.py
-
- 18 Feb, 2019 1 commit
-
-
surgan12 authored
* randomresizedmods * lint checks * test to randomrescrop added * updates * tests updated * tests updated * upd * updates * Update torchvision/transforms/transforms.py Co-Authored-By:surgan12 <33121121+surgan12@users.noreply.github.com> * tests changed * trvis * travis * fixes syntax * ... * flake fixes * flake_fixes * flake_fixes2
-
- 13 Feb, 2019 1 commit
-
-
Francisco Massa authored
The tests were previously taking 2 minutes, not they take 4 seconds
-
- 17 Dec, 2018 1 commit
-
-
surgan12 authored
* modes added * tests_added * Update test_transforms.py * Update test_transforms.py * Update test_transforms.py
-
- 04 Dec, 2018 1 commit
-
-
Varun Agrawal authored
* added separate checks for dimensionality in to_pil_image and added tests * updated to_pil_image to use both 2D ndarrays and tensors, as well as refactored the tests
-
- 25 Aug, 2018 1 commit
-
-
Soumith Chintala authored
-
- 28 May, 2018 1 commit
-
-
Holger Kohr authored
-
- 15 May, 2018 1 commit
-
-
vfdev authored
Improve `test_pad_with_non_constant_padding_modes` to avoid data multiplication in `transforms.ToPILImage()` on float data: ```python img = torch.zeros(3, 27, 27) # Float32 img[:, :, 0] = 1 # we add 1 and not 255 img = transforms.ToPILImage()(img) # This converts 1 to 255 due to [pic = pic.mul(255).byte()](https://github.com/pytorch/vision/blob/master/torchvision/transforms/functional.py#L107) ``` and thus test's correct values are [..., 200, 1, 0]
-
- 16 Apr, 2018 1 commit
-
-
arturml authored
* Add case in test_to_tensor for PIL Images mode '1' * Add support in ToTensor for PIL Images mode '1' * Fix pep8 issues
-
- 06 Apr, 2018 1 commit
-
-
anguelos authored
* Made transorms.RandomCrop tolerate images smaller than the given size. * Extended the tescase for transforms.RandomCrop * Made the testcase test for owidth=width+1 * Fixed the one pixel pading and the testcase * Fixed minor lintint errors. flake8 passes.
-
- 04 Apr, 2018 1 commit
-
-
Utku Ozbulak authored
* Added reflect, symmetric and edge padding * Updated padding docs, added tests
-
- 20 Feb, 2018 1 commit
-
-
vfdev authored
* Add random affine transformation * Rewrite __repr__ * Refactor affine transform and update tests
-
- 12 Feb, 2018 3 commits