Unverified Commit f8468e72 authored by Joao Gomes's avatar Joao Gomes Committed by GitHub
Browse files

Simplify efficientnet code by removing _efficientnet_conf (#4690)

* adding efficientnet to prototype

* Removing _efficientnet_conf from prototype and main efficientnet classification models

* fixing merge conflicts

* fixing merge conflicts

* fixing lint errors

* fixing lint errors

* fixing lint errors
parent a32a4597
import copy
import math
from functools import partial
from typing import Any, Callable, List, Optional, Sequence
from typing import Any, Callable, Optional, List, Sequence
import torch
from torch import nn, Tensor
......@@ -263,7 +263,15 @@ class EfficientNet(nn.Module):
return self._forward_impl(x)
def _efficientnet_conf(width_mult: float, depth_mult: float, **kwargs: Any) -> List[MBConvConfig]:
def _efficientnet(
arch: str,
width_mult: float,
depth_mult: float,
dropout: float,
pretrained: bool,
progress: bool,
**kwargs: Any,
) -> EfficientNet:
bneck_conf = partial(MBConvConfig, width_mult=width_mult, depth_mult=depth_mult)
inverted_residual_setting = [
bneck_conf(1, 3, 1, 32, 16, 1),
......@@ -274,17 +282,6 @@ def _efficientnet_conf(width_mult: float, depth_mult: float, **kwargs: Any) -> L
bneck_conf(6, 5, 2, 112, 192, 4),
bneck_conf(6, 3, 1, 192, 320, 1),
]
return inverted_residual_setting
def _efficientnet(
arch: str,
inverted_residual_setting: List[MBConvConfig],
dropout: float,
pretrained: bool,
progress: bool,
**kwargs: Any,
) -> EfficientNet:
model = EfficientNet(inverted_residual_setting, dropout, **kwargs)
if pretrained:
if model_urls.get(arch, None) is None:
......@@ -303,8 +300,7 @@ def efficientnet_b0(pretrained: bool = False, progress: bool = True, **kwargs: A
pretrained (bool): If True, returns a model pre-trained on ImageNet
progress (bool): If True, displays a progress bar of the download to stderr
"""
inverted_residual_setting = _efficientnet_conf(width_mult=1.0, depth_mult=1.0, **kwargs)
return _efficientnet("efficientnet_b0", inverted_residual_setting, 0.2, pretrained, progress, **kwargs)
return _efficientnet("efficientnet_b0", 1.0, 1.0, 0.2, pretrained, progress, **kwargs)
def efficientnet_b1(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> EfficientNet:
......@@ -316,8 +312,7 @@ def efficientnet_b1(pretrained: bool = False, progress: bool = True, **kwargs: A
pretrained (bool): If True, returns a model pre-trained on ImageNet
progress (bool): If True, displays a progress bar of the download to stderr
"""
inverted_residual_setting = _efficientnet_conf(width_mult=1.0, depth_mult=1.1, **kwargs)
return _efficientnet("efficientnet_b1", inverted_residual_setting, 0.2, pretrained, progress, **kwargs)
return _efficientnet("efficientnet_b1", 1.0, 1.1, 0.2, pretrained, progress, **kwargs)
def efficientnet_b2(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> EfficientNet:
......@@ -329,8 +324,7 @@ def efficientnet_b2(pretrained: bool = False, progress: bool = True, **kwargs: A
pretrained (bool): If True, returns a model pre-trained on ImageNet
progress (bool): If True, displays a progress bar of the download to stderr
"""
inverted_residual_setting = _efficientnet_conf(width_mult=1.1, depth_mult=1.2, **kwargs)
return _efficientnet("efficientnet_b2", inverted_residual_setting, 0.3, pretrained, progress, **kwargs)
return _efficientnet("efficientnet_b2", 1.1, 1.2, 0.3, pretrained, progress, **kwargs)
def efficientnet_b3(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> EfficientNet:
......@@ -342,8 +336,7 @@ def efficientnet_b3(pretrained: bool = False, progress: bool = True, **kwargs: A
pretrained (bool): If True, returns a model pre-trained on ImageNet
progress (bool): If True, displays a progress bar of the download to stderr
"""
inverted_residual_setting = _efficientnet_conf(width_mult=1.2, depth_mult=1.4, **kwargs)
return _efficientnet("efficientnet_b3", inverted_residual_setting, 0.3, pretrained, progress, **kwargs)
return _efficientnet("efficientnet_b3", 1.2, 1.4, 0.3, pretrained, progress, **kwargs)
def efficientnet_b4(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> EfficientNet:
......@@ -355,8 +348,7 @@ def efficientnet_b4(pretrained: bool = False, progress: bool = True, **kwargs: A
pretrained (bool): If True, returns a model pre-trained on ImageNet
progress (bool): If True, displays a progress bar of the download to stderr
"""
inverted_residual_setting = _efficientnet_conf(width_mult=1.4, depth_mult=1.8, **kwargs)
return _efficientnet("efficientnet_b4", inverted_residual_setting, 0.4, pretrained, progress, **kwargs)
return _efficientnet("efficientnet_b4", 1.4, 1.8, 0.4, pretrained, progress, **kwargs)
def efficientnet_b5(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> EfficientNet:
......@@ -368,10 +360,10 @@ def efficientnet_b5(pretrained: bool = False, progress: bool = True, **kwargs: A
pretrained (bool): If True, returns a model pre-trained on ImageNet
progress (bool): If True, displays a progress bar of the download to stderr
"""
inverted_residual_setting = _efficientnet_conf(width_mult=1.6, depth_mult=2.2, **kwargs)
return _efficientnet(
"efficientnet_b5",
inverted_residual_setting,
1.6,
2.2,
0.4,
pretrained,
progress,
......@@ -389,10 +381,10 @@ def efficientnet_b6(pretrained: bool = False, progress: bool = True, **kwargs: A
pretrained (bool): If True, returns a model pre-trained on ImageNet
progress (bool): If True, displays a progress bar of the download to stderr
"""
inverted_residual_setting = _efficientnet_conf(width_mult=1.8, depth_mult=2.6, **kwargs)
return _efficientnet(
"efficientnet_b6",
inverted_residual_setting,
1.8,
2.6,
0.5,
pretrained,
progress,
......@@ -410,10 +402,10 @@ def efficientnet_b7(pretrained: bool = False, progress: bool = True, **kwargs: A
pretrained (bool): If True, returns a model pre-trained on ImageNet
progress (bool): If True, displays a progress bar of the download to stderr
"""
inverted_residual_setting = _efficientnet_conf(width_mult=2.0, depth_mult=3.1, **kwargs)
return _efficientnet(
"efficientnet_b7",
inverted_residual_setting,
2.0,
3.1,
0.5,
pretrained,
progress,
......
import warnings
from functools import partial
from typing import Any, List, Optional
from typing import Any, Optional
from torch import nn
from torchvision.transforms.functional import InterpolationMode
from ...models.efficientnet import EfficientNet, MBConvConfig, _efficientnet_conf
from ...models.efficientnet import EfficientNet, MBConvConfig
from ..transforms.presets import ImageNetEval
from ._api import Weights, WeightEntry
from ._meta import _IMAGENET_CATEGORIES
......@@ -33,7 +33,8 @@ __all__ = [
def _efficientnet(
inverted_residual_setting: List[MBConvConfig],
width_mult: float,
depth_mult: float,
dropout: float,
weights: Optional[Weights],
progress: bool,
......@@ -42,6 +43,17 @@ def _efficientnet(
if weights is not None:
kwargs["num_classes"] = len(weights.meta["categories"])
bneck_conf = partial(MBConvConfig, width_mult=width_mult, depth_mult=depth_mult)
inverted_residual_setting = [
bneck_conf(1, 3, 1, 32, 16, 1),
bneck_conf(6, 3, 2, 16, 24, 2),
bneck_conf(6, 5, 2, 24, 40, 2),
bneck_conf(6, 3, 2, 40, 80, 3),
bneck_conf(6, 5, 1, 80, 112, 3),
bneck_conf(6, 5, 2, 112, 192, 4),
bneck_conf(6, 3, 1, 192, 320, 1),
]
model = EfficientNet(inverted_residual_setting, dropout, **kwargs)
if weights is not None:
......@@ -172,8 +184,7 @@ def efficientnet_b0(
warnings.warn("The argument pretrained is deprecated, please use weights instead.")
weights = EfficientNetB0Weights.ImageNet1K_TimmV1 if kwargs.pop("pretrained") else None
weights = EfficientNetB0Weights.verify(weights)
inverted_residual_setting = _efficientnet_conf(width_mult=1.0, depth_mult=1.0, **kwargs)
return _efficientnet(inverted_residual_setting, dropout=0.2, weights=weights, progress=progress, **kwargs)
return _efficientnet(width_mult=1.0, depth_mult=1.0, dropout=0.2, weights=weights, progress=progress, **kwargs)
def efficientnet_b1(
......@@ -183,8 +194,7 @@ def efficientnet_b1(
warnings.warn("The argument pretrained is deprecated, please use weights instead.")
weights = EfficientNetB1Weights.ImageNet1K_TimmV1 if kwargs.pop("pretrained") else None
weights = EfficientNetB1Weights.verify(weights)
inverted_residual_setting = _efficientnet_conf(width_mult=1.0, depth_mult=1.1, **kwargs)
return _efficientnet(inverted_residual_setting, dropout=0.2, weights=weights, progress=progress, **kwargs)
return _efficientnet(width_mult=1.0, depth_mult=1.1, dropout=0.2, weights=weights, progress=progress, **kwargs)
def efficientnet_b2(
......@@ -194,8 +204,7 @@ def efficientnet_b2(
warnings.warn("The argument pretrained is deprecated, please use weights instead.")
weights = EfficientNetB2Weights.ImageNet1K_TimmV1 if kwargs.pop("pretrained") else None
weights = EfficientNetB2Weights.verify(weights)
inverted_residual_setting = _efficientnet_conf(width_mult=1.1, depth_mult=1.2, **kwargs)
return _efficientnet(inverted_residual_setting, dropout=0.3, weights=weights, progress=progress, **kwargs)
return _efficientnet(width_mult=1.1, depth_mult=1.2, dropout=0.3, weights=weights, progress=progress, **kwargs)
def efficientnet_b3(
......@@ -205,8 +214,7 @@ def efficientnet_b3(
warnings.warn("The argument pretrained is deprecated, please use weights instead.")
weights = EfficientNetB3Weights.ImageNet1K_TimmV1 if kwargs.pop("pretrained") else None
weights = EfficientNetB3Weights.verify(weights)
inverted_residual_setting = _efficientnet_conf(width_mult=1.2, depth_mult=1.4, **kwargs)
return _efficientnet(inverted_residual_setting, dropout=0.3, weights=weights, progress=progress, **kwargs)
return _efficientnet(width_mult=1.2, depth_mult=1.4, dropout=0.3, weights=weights, progress=progress, **kwargs)
def efficientnet_b4(
......@@ -216,8 +224,7 @@ def efficientnet_b4(
warnings.warn("The argument pretrained is deprecated, please use weights instead.")
weights = EfficientNetB4Weights.ImageNet1K_TimmV1 if kwargs.pop("pretrained") else None
weights = EfficientNetB4Weights.verify(weights)
inverted_residual_setting = _efficientnet_conf(width_mult=1.4, depth_mult=1.8, **kwargs)
return _efficientnet(inverted_residual_setting, dropout=0.4, weights=weights, progress=progress, **kwargs)
return _efficientnet(width_mult=1.4, depth_mult=1.8, dropout=0.4, weights=weights, progress=progress, **kwargs)
def efficientnet_b5(
......@@ -227,9 +234,9 @@ def efficientnet_b5(
warnings.warn("The argument pretrained is deprecated, please use weights instead.")
weights = EfficientNetB5Weights.ImageNet1K_TFV1 if kwargs.pop("pretrained") else None
weights = EfficientNetB5Weights.verify(weights)
inverted_residual_setting = _efficientnet_conf(width_mult=1.6, depth_mult=2.2, **kwargs)
return _efficientnet(
inverted_residual_setting,
width_mult=1.6,
depth_mult=2.2,
dropout=0.4,
weights=weights,
progress=progress,
......@@ -245,9 +252,9 @@ def efficientnet_b6(
warnings.warn("The argument pretrained is deprecated, please use weights instead.")
weights = EfficientNetB6Weights.ImageNet1K_TFV1 if kwargs.pop("pretrained") else None
weights = EfficientNetB6Weights.verify(weights)
inverted_residual_setting = _efficientnet_conf(width_mult=1.8, depth_mult=2.6, **kwargs)
return _efficientnet(
inverted_residual_setting,
width_mult=1.8,
depth_mult=2.6,
dropout=0.5,
weights=weights,
progress=progress,
......@@ -263,9 +270,9 @@ def efficientnet_b7(
warnings.warn("The argument pretrained is deprecated, please use weights instead.")
weights = EfficientNetB7Weights.ImageNet1K_TFV1 if kwargs.pop("pretrained") else None
weights = EfficientNetB7Weights.verify(weights)
inverted_residual_setting = _efficientnet_conf(width_mult=2.0, depth_mult=3.1, **kwargs)
return _efficientnet(
inverted_residual_setting,
width_mult=2.0,
depth_mult=3.1,
dropout=0.5,
weights=weights,
progress=progress,
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment